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Chapter 1

INTRODUCTION

An important topic in electromagnetic field analysis is the
analysis of waveguide discontinuities. This is because these dis-
continuities are basic components in many microwave devices, so that
an exact knowledge of their characteristics is essential. Also, the
analysis of waveguide discontinuities, from a theoretical point of
view, is an interesting problem. The theory develbped has found
immediate application to some types of discontinuities, and has in-
deed deepened the understanding of electromagnetics in general.

Despite the extensive consideration of the subject, however,
the analysis has been confined to a small set of discontinuities.
Specifically, discontinuities that are coincident with or have regu-
lar cross sections symmetric about one waveguide cross section and
are uniform along one of the waveguide axes have been the most fre-
quently treated ones. Furthermore, in a typical situation, only a
limited number of discontinuities, usually one or two, of the same
geometry would have been assumed. General systems of discontinuities,
it appears, have never been considered before.

In analyzing waveguide discontinuities, the complete field
solution is of very little interest. Rather, the effect of the dis-
continuities on the incident modes is what must be described as
accurately as possible. From an engineering perspective, descrip-

tions employing networks of lumped elements are preferred. Any such



network must, for a structure that is both lossless and reciproca}l,
obey the two basic network laws: the conservation of complex power law
and the reciprocity law.

One pof the earliest methods used for determining the elements
of the network repreéentation of waveguide discontinuities has been
the "Variational Method" [1]. 1In this method, the network elements
are so expressed that they are stationary with respect to arbitrary
small variations of some field related quantity about its true wvalue.
That is, the network elements would be accurate to an order one higher
than that of the trial quantity, A judicious choice of the trial
quantity can then lead to remarkably accurate results.

Although ingenious and powerful, the application of the
Variational Method has primarily been restricted to single discon-
tinuities of simple geometries and moderate sjizes that are symmetric
about a waveguide cross section. This is because finding out the
appropriate trial quantity, except perhaps for some simple geome-
tries, requires a great deal of insight into the problem, and, at
times, solving another problem. Furthermore, although the results
obtained can be improved in a systematic manner using standard pro-
cedure [2, Section 7-6]}, the process is quite_ laborious. An exten-
sive collection of theoretical and numerical results for a large
variety of waveguide discontinuities obtained using this method can

be found in the Waveguide Handbook [3].




The Variational Method has gradually given way to the more
general viewpoint of the "Method of Moments" [4]. Because of its
variational character [5], and combined with the very fast develop-
ment of computer systems and software techniques, the Method of
Moments has become a basic tool in the study of waveguide discon-
tinuities, as well as of many other areas of electromagnetics. Here,
the network representation is determined in terms of some field re-
lated quantity, for which an operator, usually integral, equation
is to be solved. The solution proceeds by expanding the unknown field
quantity as a linear combination of some appropriate functions. En~
forcing the governing equation .in some way then leads to a matrix
equation for the coefficients of the expansion, which can be solved

using a matrix solution routine [6].

Moment solutions are analytically simple, in the sense that
no excessive manipulations are needed in order to minimize the compu-
tational phase of the solution. Furthermore, the amount of effort
expended in solving for many discontinuities is the same as that is
put solving for only one. Since computer codes are always written,
the automatic improvement of the solutions is very easily done. The
Method of Moments, therefore, is well suited for solving systems of
waveguide discontinuities, provided a suitable analysis can be given.,
Recently, the application of the Method of Moments to waveguide
discontinuities has been an area of active research. Specifically,

single and triple inductive posts of circular cross section have




been considered in [7], [8], where many of their characteristics
have been discussed.

As is pointed out earlier, general systems of waveguide dis-
continuities have yet to be considered. It is the purpose of this
dissertation to consider three such systems.

The first system is that of multiple apertures of arbitrary
shape in the transverse plane between two cylindrical waveguides.
The second system consists of metallic obstacles in a rectangular
waveguide that are uniform along the narrow side of the waveguide,
but are otherwise of arbitrary shape and thickness, i.e., a system
of inductive posts. The third system consists of metallic obstacles
in a rectangular waveguide that are uniform along the broad side of
the waveguide, but are otherwise of arbitrary shape and thickness,
i.e., a system of capacitive posts. Common between the first and
second systems are the inductive windows and strips in a rectangular
waveguide, and between the first and third systems are the capacitive
windows and strips in a rectangular waveguide.

The system of multiple apertures is considered in Chapter 2,
and is depicted in Figure 1 there. Assuming a multi-mode exciting
field, a modal expansion is used to express the field in the two
waveguides. A field equivalence theorem and Galerkin procedure are
then utilized to obtain the generalized network representation of the
apertures. This representation is shown to obey the two basic net-
work laws: the conservation of complex power law and the reciprocity
law. The scattering matrix is then deduced from the generalized

network representation, and its properties are examined. The analysis



is subsequently specialized to the problems of inductive and capaci-
tive windows in a rectangular waveguide, where the dominant mode is
the only incident wave. The impedance matrices of the windows are
also obtained, and readily realized by networks of shunt reactive
elements.

The system of inductive posts, which can be seen depicted in
Figure 1 of Chapter 3, is then considered. Tﬁe exciting field is
taken to be the dominant waveguide mode. A complete field analysis
of the problem is given. The analysis is quite general, and results
in an integral equation for the currents induced on the posts. Later,
this equation is solved through a Galerkin procedure. The scattering
and impedance matrices describing the effect of the posts on the
dominant waveguide mode are then obtained and examined in detail. The
impedance matrix is subsequently realized by a two-port T-network of
reactive elements. The computed reactances of some post configurations
are also reported.

The system of capacitive posts is then considered in Chapter 4,
where it is depicted in Figure 1. Since this system is dual to that
of the inductive posts, the analysis is drawn on similar lines. Spe-
cifically, a complete field analysis leads to an integral equation
for the currents induced on the posts due to an incident dominant mode
wave, which is later solved through a Galerkin procedure. The scat-
tering and impedance matrix representations of the posts are then
extracted from the analysis, and their properties are discussed. The
impedance matrix is subsequently realized by a two-port T-network of
reactive elements. The computed reactances of some selected post

configurations are given.



A word about the organization of the dissertation is in order.
Each system of discontinuities is considered completely independent
of the others. This is believed to be the best approach to the sub-
ject, despite the repetition of some of the definitions and proofs.
A discussion at the end of each chapter points out the important
results of the analysis and closely related works. Final remarks are

given in Chapter 5.



Chapter 2

MULTIPLE APERTURES IN THE TRANSVERSE PLANE
BETWEEN TWO CYLINDRICAL WAVEGUIDES

Consider a system of apertures Sl, Sz,...,Sp of arbitrary
shape located in the transverse plane between two uniform cylindrical
waveguides A and B extending along the z-axis. The mediums filling
waveguides A and B are assumed linear, homogeneous, isotropic, and
dissipation free, and are therefore characterized by the real scalar
permittivities Ea and Eb’ and the real scalar permeabilities ua and ub,

respectively., Figure 1 shows the problem at hand.

1. Basic Formulation

Let a multi-mode field be incident in waveguide A. Part of
the incident field is then reflected into waveguide A, while the rest
of it is transmitted into waveguide B.

The total z-transverse field in both waveguides can be ex-

pressed in modal form as [2, Section 8-2]

g Cl ¢ —ai it ; 81 ¢ —ai 0
=
Tb,e Pt e z >0
gl ~bi
(1)
-Y_ . Y.
ai ai
( ; Clnai e _z_x_al g ainai _z_x__al z < 0
e “Vpi®
; PiMps © 2 X84 A




WAVEGUIDE B

WAVEGUIDE A

Figure 1. Waveguides A and B opening into each other

through Sl,Sz,...,Sp.






All the modes TE and TM to z are included in the summation. In (1),
Cis ags and bi’ are the amplitudes of the ith incident, reflected,

and transmitted modes, respectively. Yai and nai are, respectively,
the modal propagation constant and characteristic admittance of the

ith mode in waveguide A:

A
xa 2
JBi 2 S 1 - CX—T) Xa < Xai
ai
= <
Yai n (2)
ai,2
= el >
L ai Kai 1 (X ) >\a Xai
a
:
Yai
; for TE to z modes
Jwu
a
= <
na:'L (3)
jue, |
for T™ to z modes.
Yai

Here, Ka is the wave number of the waveguide medium, Kai is the ith
mode cutoff wave number, and Aa and xai are the corresponding wave

lengths. The parameters for waveguide B, Ybi and n ; are similarly

b

defined. Finally, the modal vectors,_gai in waveguide A and Ebi in
waveguide B, are assumed real and so normalized that
1 i=13

i e g ®
Q 0 i#3.

The integration in (4) is taken over the cross section of waveguide
Q € {A,B}, and q € {a,b} is such that (Q,q) = (A,a) or (B,b).
For a complete field solution, the amplitudes a; and bi of

the various modes in the two waveguides are to be determined. This
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can be accomplished with the help of a field equivalence theorem.

Let the exciting field be incident in waveguide A while Sm are
covered by perfect conductors. This field, sometimes referred to as
the generator field, is denoted (Eg, Eg). The field equivalence
theorem [2, Section 3-5] states that the field in waveguide A is iden-

tical with (Eg, Eg) plus the field produced by the magnetic current

L
sheet M = kv} M~ where
m=1

y? =g B on S" (5)
while each s™ is covered by a perfect conductor. The field in waveguide
B is then identical with the field produced by the magnetic current -M
while each s™ is covered by a perfect conductor. Figure 2 shows the
equivalent situations.

The z-transverse field produced by M in waveguide A, denoted
QEan), Ea(g)), and that produced in waveguide B by -M, denoted
(gb(fg), Eb(jg)), have the same form as (1), except that there is no
exciting field. Thus, the total z-transverse field in both waveguides

is given by

[ g “Yai® Yai? Yai®
L) (CORSLE G I R R g

. i 1

z< 0
= 4
-t
._'Y L2
bi

- = >

g W A LY ]z_ Big i z >0

(6)



e~ ——

(b)

$

<
o

(a)

Figure 2. (a) The equivalent situation for waveguide A.
ﬁm exists only on s™,
(b) The equivalent situation for waveguide B.

m q
—~M" exists only on s™,
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g - ai
He + 8,0 g i"ai © zXe, v leNy e zXe,
Yai?
L - g dinai E)<-al z2<0
Y, .2
bi
= = > 0.
§ (0 z' blnbi © 2% &y 2> 0

In (6), o di’ and bi are, respectively, the amplitudes of the ith
incident mode, the ith mode produced in waveguide A by M, and the ith

mode produced in waveguide B by -M. It then follows from (5) and

(6) that
2 d, zxe . on A
. i—"-ai
i z=0
M= 9 . (7)
2 b, zxe, . on B
i— —-bi _
LM z=0

q m ., q m

The placement of magnetic current sheets M in waveguide A and -M
m o -

in waveguide B over each S therefore ensures the continuity ofEt

across the apertures. The continuity of Et’ however, requires that

2 z ©iMag 2% %4 z diNgg 2%84; + }1; BiMps 2% 8pg

on Sm, 1<m<p (8)

which is, together with (7), the equation determining the amplitudes

d, and b,.
i i
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2. The Generalized Network Representation

An exact solution of (7) and (8) for the amplitudes di and bi’
and consequently the complete field solution, can rarely be obtained.
However, only a representation of the apertures that describes their
effect on the modes of the waveguides, not the amplitudes of these
modes, is usually all that is needed. 1In this section, a representa-
tion in terms of two generalized networks is derijved.

Since the set {Sqi‘ i=1,2,...} is complete [9, Section 5-6],
a finite subset of the lower order modes can be used to approximate

the field in waveguide Q. Thus, (7) and (8) become

r L
a
2 d, zxe . on A
i=1 2 z=0
M= S (9)
Qb
) b, Zxe on B
=1 * . z=0
L o zb
2} oegnyyzxey = Lodnggzxe, + L biny zxey,
i=1 i=1 i=1
m
onS,1<m<p (10)

where Qa and Qb are, respectively, the number of modes used in the
modal expansion of the fields in waveguides A and B. Here, di and bi
are no longer the actual mode amplitudes. Only in the limit, as Qa
and Rb go to infinity, they become so. However, for sufficiently
large Qa and Qb, it can be assumed that di and bi in (9) and (10)
represent the actual mode amplitudes, while equality still holds

there.



Let {y[_?|l <icxc pm} be a set of real vectors, and put

m Pz v M, (11)

m
where Vj are complex coefficients to be determined. Substituting

(11) into (9), it becomes

r 4
a
Yy d, zxe . on A
m i=1 ' i z=0
J m . m
) viM= - (12)
j=1 zb
b, zxe, . on B
el [ z=0
Put
qu=J Iy Fpaiel R da, (13)
Q|z=0
It then follows from (4) and (12) that
=§p§: v MY - zxe ds=d
Yak . 3 —j — —ak k
m=1 j=1 g
Kb
=..2.1bi Jﬁxgbi.ixsakds’ likijla (14)
% AlB
m
wbk=§ pX thlJMIfl'zX_gbkds
m=1l j=1 3™
S
a
i 121 i J =Rl 22 e s Bya LSS
AMNB 15)

Finally, scalarly multiplying (10) by E}n and integrating over Sm,

it becomes

14



In matrix form, (14), (15), and (16) become

N
jas
=<
)
fan
<
ad
+
=i
<
o'd

c
a oa a oa b ob

Here, T denotes matrix transpose, ¥ is the vector

wo=1

W,
q QJ]

(1 B34
q

(16)

a7

(18)

(19)

(20)

>, :
V is the p segment vector whose mth segment is the vector

i
<l

> >
d, and b are the vectors

0+

+
c = [e.]
JQaXl
3=[dfg x 1
a
-5
B = byl 4o

(21)

(22)

(23)

(24)

Hq is the p block row matrix whose mth block is the matrix

15



16

m m
H = [H,.] = [[ z X e ., * M, ds] (25)
q TN s e 5 =] L
qr S qr

Yoq is the diagonal matrix

Yoq = [Yoqii]l X% [nqi]R x4, (26)

q 49 q 9

and H is the matrix

H = [H,, ] = [ J zXe . *zXe .ds] . (27)

ij bela bi aj bela

ANB

Since Ha’ H,, and H depend only on the sets of waveguide modes used

b

P m
in the modal expansion, the set g;{ =1 {g?} of magnetic currents,

and the shape of the apertures, it readily follows from (17) and

(18) that
W = HH (28)
HH=1U | (29)
mHS = U . (30)

U is the identity matrix of order Qa in (29), and of order Qb in

(30). Using (17) and (18), (19) becomes

@, +3)W =1 (31)
where

7q - Hz Yo, B (32)

T-28Y ¢. (33)



By (31), the generalized network representation of the aper-
tures is finally obtained. This representation consists of two net-
works §a and §b in parallel with the current source %, as (31)
readily indicates. Figure 3. depicts such a representation. 1In the
following two sections, the generalized network representation is

shown to obey the two basic network laws: the conservation of com—

plex power law and the reciprocity law.

3. The conservation of Complex Power Law

The complex power transmitted through the apertures into

waveguide B is basically

P_ = f ExH -z da (34)

where * denotes complex conjugate. Substituting from (5) and (6),
and using (13), (34) becomes
Q

2 i b1 bi @

In matrix form, (35) becomes

_ >H % -
Ptr = b Yob v (36)

In (36), H denotes matrix Hermitian. It then follows from (18)

and (32) that

>H % o> a -H =
P = bHYobb = v HﬁYobe VHY (37)

Thus, the complex power transmitted into waveguide B is equal to the

17




- X ! :
| O
=Y.o ’;b
I,
vpp"t @ t V:P

Figure 3. The generalized network representation of the

apertures.

18
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complex power at the terminals of network §b'

The total complex power entering the apertures from waveguide

A is given by

*
P, EXH +* zds . (38)
A|z=0

Substituting from (5) and (6), and using (13), (38) becomes

2
5 = f ) * d* *
i SO R SRR BT (39)
i=1
In matrix form
* *
p, =20y YT (40)
in oa a oa a

It then follows from (17), (32), and (33) that

* x * *
po=oel o e eV -y R Y
in oa oa 0oa a a 0a a

>H> +H= >
- I -V (41)
Thus, the total complex power entering the apertures from wave-

=
guide A is equal to the complex power supplied by the source I minus

that at the terminals of network Ya.

The conservation of power law states that the total complex

power in any network must be zero, or

P -P,L =Z0. (42)
tr in

This is guaranteed because of (31). The conservation of complex
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power law holds if and only if the complex power flow across the aper-

tures is continuous.

4. The Reciprocity Law

Let a multi-mode field be incident in waveguide B. The total

z-transverse field in both waveguides is then

( YaiZ
}dle e . z <0
- —ai
i
E! = ¢
-t
Y, .2 Y. .2
. bi 7 bi
2 ci e Ebl + Z ai e gbl z > 0
i i
\
(43)
o ,Z
-Ydin. e zxe . z <0
i ai = ~ai
B = g
Yi.:2 Y, .2
bi bi
g Cinbi e EAX Sbi + % ainbi e 2z X Ebi
y z >0

where Ci’ ai, and di are, respectively, the amplitudes of the ith
incident, reflected, and transmitted modes.

The generator field (Efg, E'g) is the field that would exist
if the exciting field was incident in waveguide B while all Sm were
covered by perfect conductors. By the field equivalence theorem, the
z-transverse field in waveguide B is identical with (E;g,.ﬂég) plus
the z-transverse field (Eé(’ﬂ')’ Eé(fﬂ')) produced by the magnetic

current sheet -M' = kﬁ) - Mm where
m=1
M= g x Eé on §" 44)



while each S" is covered by a perfect conductor,
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The z-~transverse

field in waveguide A 1s then identical with the z-transverse field

(gé(ﬂ'), E;(M')) produced by the magnetic current M' while each s

is covered by a perfect conductor.

The total z-transverse field in both waveguides is then

v
1 1y = ! <
LAY z die &y z &0
E' 7. L
—t
Yi..2 -Y, .2 Y, 42
18 m1 M1y = 1. b - ' bi 1 bi
B Sl (M0 E ©1*  Spi gcie Ebi+gbie Sp1
! z>0
(45)
[ .z
VMY = o ' ai <
I-I-a(M ) g dinai 5 ZEE g <@
H' =
<AL
P2 Yy
18 MYy = 1 bi - ' bi
HL () E Cilps & EX &yyTleiMyge o 2Xey
~Y, 2
bi
! >
+ Z binbi e z X e z>0

In (45), ci, di, and bi are the amplitudes of the ith incident mode,

the ith mode produced by M' in waveguide A, and the ith mode produced

by -M' in waveguide B, respectively. The continuity of Eé across the

apertures implies that

X

~1
jal
e -
N

whereas for that of E't

—ai

on A
2=0
(46)

on B

il
o

z
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on S, l<m<np (47)
must be satisfied.
Let a finite subset of the lower modes in waveguide Q be used

tq approximate the field there. The cardinality of this set is set

equal to Qq. Put

m
P
LU e m .
M jg Vit N e
Wh“f W oz xe, ds (49)
Q) z=0

where Yim are complex coefficients to be determined. This situatjon
is analogous to that in Section 2, and can similarly be treated. Thus,

in analogy with (17), (18), and (19), one ohtains

W eHV =3 =HD " (50)
a a

>y . .

v =uv Hd' = b (51)
N . S

2y 3= Hy 3 by D (52)

Here, ;&. V', 2', 3'. and 3' are defined as are their counterparts

;q’ 3, Z, 3, and gg respectively.
Using (30) and (51), (52) becomes
S +|="v | .
q +¥) V=1 (53)

where
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T =28 Y ¢
Y Sprtopt (34)

The generalized network representations of the apertures correspond-
ing to (53) is similar to that shown in Figure 3, except for 3‘ and

x, > >

I' replacing V and I, respectively, The reciprocity law then states
that

>T> L. §'T+

VIt T. (55)

This can be shown with the help of the reciprocity theorem.

The reciprocity theorem [2, Section 3-8] states that

J (E} X 52 ~ E? x gy +nds =0 (56)
W
where W is the closed surface enclosing the volume containing the

2, E?) are source~free fields within this

apertures, (E}, E}) and (E
volume, and n is the outward unit vector normal to W. Let W be the
surface consisting of all the metallic walls between the cross
sections of waveguide A at z = zq and waveguide B at z = 22’ for
some z; < 0 and z, > 0, and these two waveguide cross sections, and
let (g}, E}) and (E?,_Ez) be the fields whose transverse components

are given by (6) and (45), respectively. Substituting in (56) and

using (4), (56) becomes

2 L
a b
0= '
2 ) egnggd =2 L ey (57)
i=1 i=1
or in matrix form
odtTy = o8% 3., (58)
oa ob
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The reciprocity law then follows from (18), (33), (50), (54), and

(58). The reciprocity law holds if and only if the whole structure

is reciprocal.

5. The Scattering Matrix

Another representation of the apertures is in terms of their
scattering matrix. Following Montgomery et al. [10, Section 5-14},

the scattering matrix is defined as

— —

Saa sab

Sba Sbb

where the ijth element of Sqo is the amplitude of the ith mode in
waveguide Q due to the jth mode of unit amplitude incident in wave-

guide 0 (0 € {A,B}).

Put

—)

a [aJ]Q} 1 (60)
a

| 1

&= lall, . (61)
b

It then follows from (1), (6), (22), (23), (43), and (45) that
a=d-c (62)
a'=b' - ¢' . (63)

The scattering submatrices Saa’ Sba’ Sab’ and Sbb are then given by



+ -
a-= Saac (64)
-+ -
b = Sbac (65)
dr = sabZ' (66)
> -+
a' = Sbbc' . (67)

The submatrices of S can be deduced from the analysis in
Sections 2 and 4, almost immediately. Using (17), (31), and (33),

(62) becomes

> = = -1 .T _ -

a= (2 Ha(Ya + Yb) HaYoa Me . (68)
Consequently

s =280 +3) Y -u. (69)

aa a a b a oa

Similarly, from (18), (31), (33), and (65), it follows that

= = .-1_T
ST R G e e (70)

[

or, on using (28) and (69),

Sba = H(Saa +U). (71)

The reciprocity law can be used to determine Sab' Substi-

tuting (65) and (66) into (58), it becomes

- T T = -T T -+
' S.p Y o€ = ¢ Sy, Yope' . (72)
Thus
L
Sab = Yoa Sba Yob {73)

since (72) holds for all g and Z'.

25
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Finally, using (51), (53), and (54), (63) becomes

ar
Consequently

Sbb =
or

Sbb F

as follows

§ 5 -1
= Q8@ + '?'b) H

Ty —w g (74)
b ob :
s 5,17 '
2 Hb(Ya + Yb) Hb Yob - U (7%)
HS - U (76)

from (51), (63), (66), and (67).

Let the multi-mode field be incident on the apertures simul-

taneously in

waveguides A and B, The total z-transverse field in both

waveguides is readily found from (1) and (43) as

L (7
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The complex power to the left of the apertures is then given by

=-+ > ->'H* J ~+'
PO (c +a+4d") Yoa(c a-d") (78)

whereas that to the right of the apertures is

> -> > H % > -+
P =(b+c'"+a") Y (b=-c'"+a') . (79)
0+ ob

Here, as before, a finite subset of the lower order modes of cardi-
nality Qq is used to approximate the field in waveguide Q. By the

conservation of complex power law, PO and PO must be equal. Put

- +
N4
0oa
Y = ' (80)
| Yobq
[ >
C
._>
¢ = i (81)
7

Then, using (59), (64), (65), (66), and (67),

Sshy*s & + ¢rs - shyE - dE . (82)
Since ¢ is completely arbitrary, (82) gives

s*s + (¢7s - sty = ¥ (83)

Although the whole structure is both reciprocal and lossless,

the scattering matrix is neither symmetric nor unitary.
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6. Inductive Windows in a Rectangular Waveguide

Consider a system of windows wl, wz,...,wp located in the

z=0 plane in a rectangular waveguide. These windows are assumed uni-
form along the narrow side of the waveguide, i.e., of the inductive
type. The waveguide medium is assumed characterized by the real
scalar constitutive parameters ¢ and Y. Figure 4 shows the situation
at hand.

Let a TE to z mode of unit amplitude be incident on the

10

windows from the left. This mode has the field distribution

. -Y.Z

B g
! (84)

Hi = e_YlZ z X e —_l— e—le—é-x %

= i1 = =1 jup =25

In (84)
- 2 . n
e = s sin (a X) ¥y {85)

and the subscript "a'" is dropped from Y1 and ny - Furthermore,
it is assumed that a< A< 2a and 2b < ) so that only the dominant
mode can propagate in the waveguide.

Since the window-waveguide structure is uniform along the
y-axis, and since the incident mode has only an Ey component that
does not vary with y, the field scattered must have only an Ey com—
ponent that does not vary with y. The only modes excited in the wave-
guide are therefore TEno to z modes, since these are the only modes
having only an Ey component that does not vary with y [2, Bection

4-3]. The field distribution of any such mode is similar to that



or
AAAAN AN AN

Figure 4. p inductive windows in a rectangular waveguide,
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of the dominant mode, viz.

tynz 3
gre "o
; (86)
- ty z 1 !Ynz 3
BomFrpe Vaxecgge T opnne
where
e = 2 sin (I-‘-11 x) (87)
&n ab a L
and
nm, 2 2
Yn (?)-K . (88)

The change of subscripts from 1 to n is for later convenience.
The total z-transverse field has only a y-component of elec-
tric field that does not vary with y. It then follows from (5) that

each !? has only an x-component that does not vary with y:

y? = Mm(x)g_ on W" . (89)

The generalized network representation of the windows can be
obtained as indicated in Section 2. Here, however, the whole set of
modes is used, which calls for some minor changes in the formulas

there.

Since the dominant mode is the only incident mode, ¢ now
becomes

¢ = 1800y - (90)

In (90), Gun is the Kronecker delta function



§ = J (91)

un

L

> > >
The vectors wq, d, and b are likewise vectors of infinite length.

Furthermore, since the mediums on both sides of the windows are

identical,
S B
WS W T W (92)
H, = H =H (93)
Yoa I Yob - Yo ' (94)
H is then the identity matrix of infinite order. Consequently
Ya = Yb =Y =H Yo HO (95)

= > >
7k (96)

where Y is the p by p block matrix whose fmth block is the matrix

g g =050 | Mleds' | e MMds] (97)
13 xpm n=1 g R m ™ J prP
P W W
and T is the p segment vector whose {th segment is the vector
o, = J My edsl , . | (98)
p x1 2 p x1

W



This representation js depicted in Figure 5.

Minor changes are also due Eor'the scattering matrix of the
windows, The higher order (n > 1) modes excited are evanescent,
i.e., decay exponentially with distance from the windows. Thus, at
sufficiently large distances, only the dominant mode exists, The
scattering matrix can then be defined as

~ .

S = : (99)

The mode-amplitude vectors there then reduce to scalars, viz.,

gl 3 g {g: g’ a’! Z" b', 3'}
g = (100)

1, g« (¢, ¢}

!
while HO becomes the p segment row vector ho whose mth segment is
the row vector

nn

- (v - m ,
i Ih ] = [=- [ e, Mj ds] . {101)

01 1 x p™ ‘J,Jm Ixp"

H is then unity. The scattering parameters are readily found from

(69), (71), (73), and (76) as

m
P P
a, =al=-1 - z 2 v e. M" ds (102)
1 1 S 13
m—l le m
W
b, =d'. =1 +a, =1+ a/ (103)

32




Figure 5. The generalized network representation of the

windows.

~<H
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The scattering matrix is both symmetric and unitary. Notice
that the second term in the left-hand side of (82) then accounts for

the reactive power basically due to the evanescent modes.

7. Capacitive Windows in a Rectangular Waveguide

Consider now the system of windows wl, wz. o0 wP in a rec-
tangular waveguide showﬁ in Figure 6. These windows, as can be seen,
are uniform along the broad side of the waveguide, i,e., of the
capacitive type. The waveguide medium is assumed characterized by
the real scalar constitutive parameters € and M.

Let a TE., to z mode of unit amplitude be incident on the

10
windows from the left. This mode has the field distribution

i_ 0
E¥ == e L W
i (104)
“YnZ “Yn &
. 0 i B 0" o
g WC 2% 207 Fup © ox = % o
4

where

2 L
N /ZE sin (g X) Y. (105)

Here, the index of the dominant mode is 60" rather than "1" as in

(84) and (83). It is still assumed, however, that a < A < 2a and

2b < X so that only the dominant mode can propagate in the waveguide,
Since the window-waveguide structure 1is uniform along the

x-axis, and since the incident mode has an Hx component that varijes

as sin (g x) and no x-component of eleetric field, so must be the

scattered field. The only modes excited in the waveguide are



A
[»]
Y

Figure 6.

p capacitive windows in a rectangular waveguide.
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therefore TEln to x, since these are the only modes having an H
X
component that varies as sin (g x) along the x-axis and no Ex com-

ponent [2, Section 4-4], The z-transverse field of any such mode

has the distribution

ty z N
E = e N e
. -n
\, (106)
_ ty z
H =+n e n zxe +H y
T, n - = y = J
where
2€ W
e = —2 sin € x) cos (BE v) vy
-n ab a b =
1 n=20 pe (107)
€ =
n
2 n>1
and
= I—Q— ‘n
i y. 0
A (108)

- nm2 . M2 _ 2
Yn—/(b)+(a) K

The modal expansions in Sections 1, 2, and 4 are in terms of
TE and TM to z modes. However, any other complete set of modes can
be utilized. Only, then, the appropriate modal characteristic ad-
mittances have to be used in (3), while everything else remains un-
changed. Thus, for the problem of capacitive windows, a set of TEln
to x modes is clearly ghe natural choice, and (2) and (3) are to be

replaced by (108).
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The total z-transverse field has only a y-component of elec-
tric field that varies as sin (g x) along the x-axis. It then follows

from (5) that each g@ has only an x-component that varies as sin Cg}{):

MY = sin () M(Y) x on W' . (109)

The Hy component in (106) does not therefore figure in the analysis.
The generalized network representation of the window is given
by (96) and depicted in Figure 5. Here, however, Y is the p by p

block matrix whose mth block is the matrix

sim _ gim
Lol [Yij] 9 m
P *xp
= v in (I 1 L ' ] m
{ Z nn [ sin (a z") Mi ends J ensln (ax)b%ds]pzxpm
n=0 2 m
W W
(110)
and ? is the p segment vector whose 2th segment is the vector
- [Iil g = I[- Ny [ sin (g'X) M, eqds] (111)
p x1 £ p x1

W

as can readily be verified by following steps similar to those in
Section 6.

The scattering matrix is analogously given by

—

S = (112)
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where
p"
m R m
ag = ad =1 - E .2 Vj ( ey sin (E-x) M? ds (113)
m=1 j=1 Jm
W
by = dd =l+ay=1+ aq - (114)

Like that of the inductive windows, the scattering matrix of the
capacitive windows is both symmetric and unitary. The second term
in the left-hand side of (82) now account for the reactive power due

to TE to x, n > 1, modes.
In

8. The Impedance Matrix of the Windows

Let TElO to z modes of arbitrary amplitudes c, and <, be inci-

dent on the windows (inductive or capacitive) from the left and from
the right respectively. Far from the windows, only the same mode can

exist.

Let vy and vy be, respectively, the amplitudes of the Ey com~

ponent far to the left and to the right of the windows referred to
the z=0 plane. It then follows from (1), (43), and (99) for the in-

ductive windows and (112) for the capacitive ones that

c (115)

= (1 +s L

AR

S c (116)

) 1 1 F 1+s

<
]

22) €

where Sij (i,j € {1, 2}) is the ijth element of the scattering
matrix in (99) or (112). The choice of 2=0 as a reference plane is

only a matter of convenience. In matrix form, (115) and (116) become
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-+ >
v=({U+58)c. ' (117
In (117)
.Vl-
->
V:
v
P
~ (118)
e
1
A
C
2]

<

Similarly, let i1 and i? be, respectively, the amplitudes of
the Hx component far to the left and to the right of the windows

extrapolated back to the z=0 plane. Then

- clOil = (1 - Sll) c; - 512 ¢, (119)
ClOiZ = - S21 ¢y + (1 ~ 822) Cy - (120)
In matrix form, (119) and (120) become
7 _ -
ClO i (U S) ¢ (121)
where ClO is the characteristic impedance of the dominant mode,
and
-i
N 1
i= . (122)
)

To relate to network theory, let (Vl’ - il) and (v2, iz) be

the complex voltage current pairs at the terminals of a two-port



network [10, Section 4-5]. Then
> >
v=24 (123)

where Z is the network impedance matrix. From (117) and (121), Z

is readily found as
-1
Z= ClO (U+38)@W-~-s8) . (124)

Since S is symmetric, so is Z. Furthermore, since

]

2= AW -9 =g s"s + (sl - gy

-1

H H
QlO(S +0)(s" - 1)

- - 78 (125)

the elements of Z are pure imaginary, Finally, using (99), (102),

and (103), or (112), (113), and (114), in (124), it becomes
‘

X X
Z =1
X X >
1 +8 (126)
jx:-c _.____ll
10 2511 J

as can easily be verified by carrying out the matrix inversiop and

multiplication there.

40



41

9. The Equivalent Network of the Windows

The effect of the windows on the dominant waveguide mode is
described by the windows' impedance matrix Z. Such a represeﬁtation
can be realized in the form of a two-port T-network [10, Section 4-51].
However, because of (126), the equivalent network is merely a shunt
reactive element.

The higher order modes excited are evanescent, and are there-
fore the cause for a localized energy close to the windows. In view
of (3)and (88), the energy stored close to the inductive windows is
predominantly magnetic, whereas that stored close to the capacitive
windows, in view of (108), is predominantly electric.. The shunt ele-
ment in the equivalent network is therefore an inductor for the induc-
tive windows, and a capacitor for the capacitive windows, as can he

seen in Figure 7. There

- 1+ a
ClO 5a for inductive windows
1
iX o= (127)
1 +a
%10 " for capacitive windows.
L 0

10. Concluding Remarks

In this chapter, the system of multiple apertures of arbi-
trary shape in the transverse plane between two cylindrical wave-
guides has been considered. The analysis is based on the generalized

formulation for aperture problems [11].
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+ A +
i P |
&, M 3 iX 2 ¢,
2:0 2:0
(a)
+=4——— B S — :+
i) ip
z=0 (b) z=0

Figure 7. The equivalent network (a) for the inductive

windows (b) for the capacitive windows.
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For a multi-mode incident field, a representation of the
system of apertures in terms of two generalized netwérks in parallel
with current sources is obtained. This representation obeys the two
basic network laws: the conservation of complex power law and the
reciprocity law. Furthermore, each generalized network depends on
the modes of only one waveguide. Thus, for a given collection of
apertures, different waveguides can be considered one at a time.
The generalized network representation can then be obtained for any
required combination.

The scattering matrix of the apertures is then deduced from
the generalized network representation. Although the aperture-
waveguide structure is both reciprocal and lossless, the scattering
matrix is neither symmetric nor unitary. This is because of the
different characteristic admittances of the modes, and the con-
sideration of evanescent modes. The scattering matrix can be made
symmetric by using a different mode normalization from (4), but no
such normalization can make the scattering matrix unitary if eva-
nescent modes are present. A detailed discussion of this point is
given in [12]. Since the scattering submatrices are expressed in
terms of the generalized networks, given a set of apertures, the
scattering matrix for a combination of two waveguides can be ob-
tained by combining the generalized network for one waveguide with
that of the other.

Inductive and capacitive windows in a rectangular waveguide

are then considered as special cases of the general problem. The
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windows scattering matrix, since it involves only the dominant
waveguide mode, a propagating mode, is both symmetric and unitary.
The windows' impedance matrix is then obtained, and readily realized
as a shunt reactive element. Other problems of interest that can
be worked out as special cases are those of inductive and capaci-
tive windows in a rectangular waveguide loaded with different
dielectrics on both sides of the windows, and of coupling through
small apertures. The latter is discussed in a more general setting
using related methods in [13].

The analysis in this chapter is basically theoretical, and
is presented so that all the results and different relationships
are clearly seen. Results that relate the present procedure to
the mode matching and conservation of complex power techniques are

given in [14].
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Chapter 3

MULTIPLE INDUCTIVE POSTS IN A

RECTANGULAR WAVEGUIDE

Consider a system of posts Pl, P2,...,Pp located close to

each other in a rectangular waveguide. These posts are assumed
perfectly conducting, of arbitrary shape and thickness, and uniform
along the narrow side of the waveguide, i.e., of the inductive type.
The medium filling the waveguide is assumed linear, homogeneous,
isotropic, and dissipation free, and is therefore characterized by
the real scalar permittivity € and the real scalar permeability M.

The problem considered is depicted in Figure 1.

1. Preliminary Considerations

Let a TE10 to z mode of unit amplitude be incident on the

posts from the left. This mode has the field distribution

-

. -Y, 2
E1 = gin Cﬂ X) e 1

y a

. -Y -Y. 2
ih o 1 , X 1
HX = Jop sin (a x) e \ (1)
. _ -Y. 2z
H =~ T_ cos CE X) e C

z jwua a

o
where

Y1 ] Kl ] a

(2)



K
) = E

b 4
.z

Figure 1.

p inductive posts in a rectangular waveguide.
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In (2), K is the wave number of the waveguide medium, and X is its
wave length. Furthermore, it is assumed that a < A < 2a and 2b < A
so that only the dominant mode can propagate in the waveguide.

Since each post is uniform along the y-axis, and since the
exciting mode has no y-component of magnetic field, neither does the
scattered field. That is, the scattered field is TM to y, and can
therefore be derived from a magnetic vector potential A having only

a y-component ¢ [2, Section 8-7]:

A=¢y . (3)

The scattered field is given in terms of ¢ by

s 1 ]
= e X
£ jwe Vi R0 e
{ (4)
B =V x ¢y
while ¢ itself satisfies
(V2+K2)¢>=0. (5)
Expanding (4) in rectangular coordinates, the components of the
scattered field are found to be
BS = 1 82 6
X  jweE Jyox
2
s 1 ) 2
E == (= + k7 )¢
we 2
y ] dy L
s _ 1 82
Ez "~ jwe 9ydz ¢ (6)
s __ 9
Hx 1 9z g
H® = 0
y
S ol
Hz T oox 9.
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Furthermore, since each post is uniform along the y-axis,
and since the exciting mode has only a y-component of electric field
that does not vary with y, so does the scattered field. It then
follows from (6) that ¢ is also independent of y. The only components

of the scattered field are now given by

Ey = J'U)U ¢ (X’Z)

5.2 b x,2)

Hx Y ¢ (x,2 > 7)
s_ B

Hz - 3% ¢ (X,Z). )

The total field, incident plus scattered, must have zero
tangential electric field at the waveguide walls, The incident
field is a free waveguide mode, and does therefore have zero elec-
tric field tangent to the walls. The scattered field must then have
zero tangential electric field at the walls. This is readily accom-

plished by setting

¢(x,z) = 0, x = 0, a, and all y and =z. (8)

The boundary conditions (8), once satisfied for any value of y, are
clearly satisfied for all values of y. Thus, the problem is basi-
cally a two-dimensional scalar one that can entirely be worked out
in some y=constant plane within the waveguide.

In the next section, the Green's function for the TMIﬂ)to y

modes in a rectangular waveguide is obtained. This is then used

to determined ¢.



2. The Green's Function for TM to y Modes in a Rectangular

n0
Waveguide

Consider a uniform electric current filament J directed
across the waveguide parallel to the y-axis and located at (x', 2')
as shown in Figure 2.

Since J is directed along the y-axis, the field produced
must have only a y-component of electric field and no.y—component
of magnetic field. Furthermore, since J is uniform along the y-
axis, so must be Ey' This can readily be established, for instance,
by the reciprocity theorem [2, Section 3-8]. A magnetic vector
potential having only a y-component ¢, proportional to Ey’ as is
seen in Section 1, can then be used to derive all field components.

Only TM , toy (TEnO to z) modes can be excited in the
wayeguide, since these are the only modes having only an Ey com-
ponent that does not vary with y and no Hy component [2, Sectioms
3-4,4]1. The potential function ¢ due to the filament, relabeled G,
is therefore referred to as the Green's function for TMnO toy
(TEnO to z) modes in a rectangular waveguide. Below, G is found as
a series of these modes.

The wave equation satisfied by G, for each y, is

)
(—5 + =5 + €) Gx,2) = - S(x-x") 8(z-z") (9)
0X oz

subject to the boundary conditions

G(x,z) = 0, x = 0,a, and all z. (10)
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Figure 2.

—Z >

An electric current filament J in a recgangular

waveguide parallel to the y-axis.
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In (10), S is the Dirac delta function. Multiplying throughout

. nmn . . 3
(9) by sin (:; x), then integrating over x from 0 to a, it becomes

2 a
C£L§ + K2 - 621)2) f G(x,z) sin CEE x) dx
dz a 2
0
= - gin (%? x') 8§(z-z'") . (1)
Put
a
Gn(z) = [ G(x,z) sin (%? x) dx
0 n=1,2,... . (12)
v, = [ EDE P

The one-dimensional wave equation (l1) then becomes
d2 2 nTm 0 . '
(——E—y)G(z)=—sin(—-X)<5(Z"Z)- (13)
o n n a

For the solution of (13) to represent waves traveling away

from the filament, Gn must be of the form

6, (@) = (14)

where An and Bn are constants to be determined. Since G is pro-
portional to Ey’ it is continuous across the filament at z=z'

[2, Section 1-14], and so is Gn' Thus

A e - B e =0, (15)
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Furthermore, integrating (13) over z from z'-A to z'+A, then let-

ting A go to zero, it becomes

z'
d & = | W a7,
o Gn(z) . = - gin (;r x') . (16)

, d . . . . 0f
That is, == G_ is discontinuous at z = z' by the amount - sin Gz—x').

dz n
Thus
-y, 2’ Yy2'
n n . nm _,
= — X o
Ay e +B Y e sin (5 x') an
Solving (15) and (17) simultaneously, An and Bn are found
to be
Yy z'
. nm n
An 2y sin (a. x') e (18)
n
B = _L . (_II’_T_ X') e-’Ynz' (19)
n zYn sin (5 .

Combining (18) and (19) with (14), Gn becones

-y _|z-2'|
c_(2) = E%g-sin (%? O . n=1,2,... . (20)
n

By Fourier theory [15, Section 43 ], (12) can be inverted as

-Y_|z-z"|
o gin(®rx) sin(Xrx') e B

J 2 2 : - (21)
n=1 Yn

G(x,zlx',z') =

R [

Clearly, G satisfies the boundary conditions (10).
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3. Basic Formulation

Let (gl,_gi) be incident while all the posts are absent,

and (E(J), H(J)) be the field produced by an electric current

P
of density J = kv)_g@, where g? is the current on Pm, while all the
m=1

posts are absent, By the uniqueness theorem [2, Section 3-3],
(gi +_§(£),'§1 + H(J)) is identical with the original field

whenever

2" x B +EW) =0 onP". (22)

In (22), g@ is the outward unit vector normal to P. (EQ), HA@N

must then have the field distribution (7). Since

" x (H(J) - H(

) ) =J on P (23)

v=0

V=O+

m m m
where V is the distance along n from P, J has only a y-component

that does not vary with y:

g@ = Jm(x,z) % - (24)

As is pointed out in Section 1, the problem is a two-
dimensional scalar one that can be worked out in some y=constant
plane within the waveguide. Thus, all source and field points are,
hereafter, assumed located in any such plane.

By definition, G(x,z|x',z')y is the magnetic vector poten-
tial produced at any point (x,z) by a unit electric current fila-

ment in the y-direction located at (x',z'). By superposition, then,
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J produces at (x,z) the magnetic vector potential ¢ y, where

¢ (x,2) = E J M(x',z") G(x,z|x",z") dt'
o

de' = /(dx')2 + (dz")?

(25)

In (25), G is given by (21), and primed and unprimed coordinates
denote, respectively, source and field points.

Since G(x,z|x',z') is a solution of the homogeneous wave
equation (5) for all (x,z) # (x',z'), so is ¢. Furthermore, ¢ satis-
fies the boundary conditions (8) by virtue of (10). Thus ¢, and
consequently the complete field solution, can be found once all g@

are known. Using (1), (7), and (25), (22) becomes

T _le 4 m
sin C; x) e - jwy Z J J (x',z") G(x,z|x',z' dt' = 0,

m=1 Cm

(x,2) e ¢¥, 1<2<p (26)

which is an integral equation for J.

The higher order (n > 1) modes are evanescent, i.e., decay
exponentially with distance from the posts. Thus, at sufficiently
large distances, only the dominant (n = 1) mode can exist in the
waveguide. The reflection coefficient of the dominant mode is
readily found from (7), (21), and (25) as

-y.z'

I = - M E J Jm(x',z') sin (E X') e 1 dc' . (27)
ay = a
1 m=1 Cm
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The transmission coefficient of the dominant mode is then

T =1 _ Jup E J Jm(x',z’) sin (E x') e
=1 Cm 2

4, The Scattering Matrix

Following Montgomery et al. [10, Section 5-14], the scatter-

ing matrix of the posts is defined as

! 512
g = A (29)
S21 522
In (29), S11 and S21 are, respectively, the amplitudes of the dominant

mode reflected to the left and transmitted to the right of the posts

due to an incident TE10 to z mode of unit amplitude from the left. Con-

sequently, and 52 are given by (27) and (28), respectively.

511 1

Similarly, 822 and 812 are, respectively, the reflection

and transmission coefficients of a TE,, to z mode of unit amplitude

10

incident on the posts from the right. This mode has the field dis-

tribution
. Y42 ]
E- = sin GE X) e L
v a
. Y Y2
i T . 1
EX —-Eaﬁ sin (a x) e > (30)
i -7 ™ le
= — cos (—x) e .
z  jwpa a ]
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The previous analysis carries through in this case. Thus,

the scattered field is given by (7) and (25), but with

p

J' = L,) i'm, now replacing J in (25), determined by solving the
m=1

integral equation

i le m
sin Cg X) e - jwp E J J'x",z") G(x,z|x‘,z') dt' = 0,
m=1 Cm

(x,z) € CQ, 1<2<p (31)

rather than (26). 1t then follows from (7), (21), and (25) that

jw P m ™ le

s..=-LH T | 0™xt ") sin & x') e e’ (32)
22 ay I J a

1 m=1 /m

C

jwu m il —le'
812 =1 - py Z f J'" (x",z") sin C; x') e de! . (33)

Yl m=1 Cm

The scattering matrix is both symmetric and unitary. That

is

w
[}
w2

(34)

SSH = SHS = U

where T and H denote, respectively, matrix transpose and Hermitian,
and U is the identity matrix.
1 1 2 2 . :
Let (E, H) and (E°, H) be the z~transverse fields in the

waveguide, sufficiently far from the posts, due to TElO to z modes

of arbitrary amplitudes , and <, incident from the left and from

the right of the posts, respectively. Tt then follows from (1), (7),

(21), (25), (27), (28), (30), (32), and (33) that
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-Y, Z Y2
1 1 L 1
cl(e + S11 e ) sin (g X) y z << 0
EI-: <
c1821 sin (g'x) e 1 y z >> 0
_le Yy2 i
nlcl(e S11 e ) sin (E'x) X z<<0
E} = <
) m 1
-n101821 sin (g X) e X z >>0
(35)
Y,z
. il 1
C2512 sin Cg X) e y z << 0
ol
Y,z -Y, 2
1 1 ] m
c2(e + 522 e ) sin (a X) y z >>0
- 'Yz
" il 1
nlczs12 sin (a xX) e X z << 0
B =
Y,z -Y.z
1 1 A 1l
nlcz(e - 522 e ) sin C; X) x z>>0.

In (35), nl is the characteristic admittance of the dominant waveguide
mode:

v
- .1 (36)

Let W be the closed surface consisting of all metallic walls

between the two waveguide cross sections at z = z, and Z,» for some

z; << 0 and z, >> 0, and these two cross sections. The reciprocity

theorem then states that

J(Elxgz—szg)-nds=O (37)
W
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where n is the outward unit vector normal to W. Substituting (35)

into (37), there then results

abnlclSlzc2 = abnlcllec2 (38)

whence

812 = 821 G (39)

The scattering matrix is symmetric if and only if the whole structure
is reciprocal.

That S is unitary follows from conservation of power con-
siderations. Let the two dominant modes be simultaneously incident
on the posts from the left and from the right. The complex power

scattered far to the left and to the right of the posts is basically

ab

2 2
P =5 My UeSyy + ep8,l% + legSyy +e,8),[0) (40)
whereas that incident is given by
_ab 2 2
Pin = e[+ 1oyl (41)

Since the structure is lossless, and since Pin and PSC are real,

they must be equal. Put

Fcl‘
¢ = (42)
€2
L il
Then
S0 i o D T g @
or

sts = v. (44)
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5. The Impedance Matrix

Let TElO to z modes of arbitrary amplitudes ¢y and e, be
incident on the posts from the left and from the right, respectively.
Let Vi and vy be, respectively, the amplitudes of the Ey com-

ponent far to the left and to the right of the posts referred to the

z = 0 plane. It then follows from (35) that

v, = (1 + 8. +S.. ¢ (45)

11) ©1 12 €2

I

<
il

+ (1 + Szz) c, - (46)

The choice of z = 0 as a reference plane is only a matter of con-

venience. In matrix form, (45) and (46) become

vV=o(U+8) ¢ (47)
where
it
v = (48)
V2

Similarly, let i, and 12 be, respectively, the amplitudes

1
of the Hx component far to the left and to the right of the posts

extrapolated back to the z = 0 plane. Then

=gyl = @ - 899) ¢ = 8py0 (49)

- 8.,c, + (1 -5 (50)

1ty 2141 22) S
In matrix form, (49) and (50) become

Z, i=@w-8)¢ (51)



where

i= . (52)

To relate to network theory, let (vl, - il) and (v2, 12)
be the complex voltage-current pairs at the terminals of a two-part

network [10, Section 5-2]. Then

> >
v=21 (53)
where Z is the network impedance matrix. From (47) and (51), Z

is readily found as
z=1¢,(U+8)(U - S)"1 ! (54)

Since S is symmetric, so is Z. Furthermore, since

2=g@+E -9 =z S"s+9E"s -7

-y, S roet -nT
= - gt (55)
the elements of Z are pure imaginary. Thus
- T
X1 X12
5 . (56)
?
o %22 |
X, =X,
12 1
i J
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6. The Equivalent Network

The complete field solution is seldom needed. Rather, the
effect of the posts on the dominant waveguide mode is what must
accurately be described. From an engineering perspective, a de-
scription in terms of a network of lumped elements is preferred.

The effect of the posts on the dominant waveguide mode is
fully described by the posts' impedance matrix Z. Such a representa-

tion can be realized in the form of a two-port T-network [10, Sec-

tion 4-51.
The characteristic impedances of the TMnO to y modes are
given by
S N . , n >
n
@2 - F
a
(7
c= [ &

Since these modes are evanescent, the energy stored close to the
posts, in view of (57), is predominantly magnetic. This effect can
suitably be represented by an inductor in the shunt arm of the net-
work. The elements in the series arms, however, are capacitors to
account for the charge difference across the posts in the z direction.

The equivalent network of the posts is shown in Figure 3.
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. )t |
i) e
¢, Yi '3 X2 Vo g,
S P
z=0 z2=0

Figure 3.

The equivalent network of the posts.
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7. Solution of the Integral Equation
The integral equation (26) can be put in the compact form
3
E "™ = v
m=1
m
2™ = juu J IMx',2") G(x,z|x',z') dt’ | (58)
m
C
V = sin Qg X) e 1 . (x,2) ¢ CQ, 1<2<p.
An exact solution of (58) can rarely be obtained, and an approximate
solution has then to be sought.
Let each c™ be approximated by a polygon ztn = {ST,SQ,...,Smm}
q
as shown in Figure 4, and put
m
M,z = C& 17 T, 2") (59)
2 373
In (59), IT are complex coefficients to be determined, whereas each

J? is a real function that vanishes on all Si $4°

unspecified.

m=1 j=1

2
7 m but is otherwise

Substituting (59) into (58), it becomes

§ g o

m,.m
z2.(J)Y+r=¥V
J(J) s

1<1<q (60)

(x,2) € Si, 1< <p,

where Z?(J?) is given by (48) except that the integration is taken
over S?, and r is a residual term. A Galerkin solution [4, Sec-

tion 1-3] can be obtained by requiring that r be orthogonal to

all J% .
i



x'j“H ) z;"”)

(x",27)

Figure 4. c® approximated by a polygon Em.
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Define the inner product

*
<A, B> = AB dt . (61)

|
o

Taking the inner product of (60) with each Ji, and enforcing the

Galerkin condition

<r, Ji> =0, 1<8<p, 1<ic< qR (62)

there then results the system of equations

m
E (5 <z, J§> = <v, Ji> .
m=1 j=1 J 3
. 2
1<2<p, 1<i<q . (63)
In matrix form, (63) becomes
Z1=V (64)

]

where Z is a p by p block matrix whose fZmth block is the matrix

o1,
* q *q

£m

% (65)

Lm i m, . m
12,3 g, ™ 03

> >
and I and V are p segment vectors whose mth and %th segments are

the vectors

™ = 1™ ) (66)
1 M1
¥ = [vi] o e % . 67)
g x1 * q x1

respectively.

65
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The currents J' given by (59), with the coefficients I?
determined from (63), form the Galerkin solution of (58). A Galerkin
solution of (31) can be obtained in a similar manner. Clearly, then,
using the same J?, the solution is given by (59), but with the coef-
. ficients now determined by solving (64) with the right-hand side

-5
vector V conjugated.

8. Evaluation of the System of Equations

The construction of Z in (64) constitutes a large portion
of the work involved in the numerical solution. An efficient evalu-
ation of the elements of 7 is therefore necessary for the success of
the solutien.

The ijth element of the mth block of 7 is given by

Zi? = juu J Ji(x,z) dt J J?(X',Z') G(x,z|x',2z") dt' (68)
s st
i J

where J? are so far unspecified. A particularly simple choice for

J, is
J
1 (x',z') € S?
J?(x',z') = (69)
2 # m
T
0 (x',2") € Si # 3

m '
which corresponds to a pulse expansion of J . Zi? then becomes

p
Z%? = jwy ( dt J G(x,zlx',z') de' . (70)
1] Jy m
S, S,
1 J
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Put

Ri?(x,z) = j G(x,z|x',z') dc’', (x,2) € Si . (71)

By the first mean value theorem of integration [16, Section 7-18],

'3
there exists a point (xo,zo) € Si such that

fm _ 2 m
Zij = jwu Li Rij(xo’zo) (72)
where
L ? 2.2 . 8 8.2
Li= Oy mxp) F (g -2 (73)

is the length of Si.

L
The evaluation of Zi? is now completed by integrating G

over S?. Put

1 Y - [ 1
G(xo,zolx ,z") (G0 + Gy + Gz)(xo,zolx s2') (74)
In (74) '
1 m L —j%lzo—z'|81
vty — s Al . Ty
Go(xo,zolx ,z') ijl sin (a xo) sin (a x")e
1 T 1 nm nm - %glzo—z'l
' 1y - * L oL AW . SUNL
Gl(xo,zo|x ,z') = anln sin (a xo) sin (a xe
1 T T __glzo_z'l
' Yy = [egd il PO | N |
Gz(xo,zolx ,zh) - [+~sin (a xo) 31n(a x') e 4
3 T nw
. ol . DTy
+ 22 sin (a Xo) sin (a x'")
_Eiz _Z'IB _EJI_Z_ZI|
o a’o n o allo
X( B = )]
‘T1 n 4

(75)
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<
3
!
0
Ik
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N
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1
SRE
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N
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N’
N
(]
NPE
w0
=t
o
(%
no
| .

The decomposition (74), therefore, amounts to expressing the dynamic
Green's function G in terms of a dominant mode wave,GO, the cor-
responding static Green's function Gl’ which can be obtained from
(21) by setting K equal to zero, plus correction terms GZ'

The series defining G, is readily summed to give

1

T, _ovly - i '
cosh(a|z0 z']) cos — (xo+x )

1

' ' = = hY
G1(Xo’zoIX L) 4m log ( i ' i . ) (77)
cosh(=|z -z'|) - cos — (x —x'")

a'"o a o

where log denotes the natural logarithm. The details of the summa-
tion are given in Appendix A. The series in G2 is dominated by an
exponentially convergent series of positive monotonically decreasing
terms (see Appendix B), and can therefore be summed directly at a
minimal cost.

The integration of G can be carried out numerically, and

for that purpose any quadrature rule can be used. Thus

\J | \i
Jm G(xo,zolx ,2') dt

S,
J
=3 Y qk(GO +Gy GZ)(Xo’zo|
k=1
m m m m
- - + 8

68
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In (78), N is the order of the rule, are its coefficients,

I
and pk determine the location of its abscissas.

When evaluating the diagonal elements of E, Zfi, G1 offers
a logarithmic singularity at (xo,zo) e Si that requires particular

attention. In Appendix A, the singular part of G1 igs found to be

- 1 2
Gls(xo,zo]x'.z ) = - o log CE‘J/(X'—XQ) + (z'-zo)z). (79

Put

a ] 1 - L] '
Glp(xo,zolx 2') = (G Gls)(xo’zolx »2') (80)
Then

] L |
Jg G(xo,zolx ,2') dt

51

L 1] 1 1 4 ) L}

f Gls(xo,zo’x ,2') de' + J (G0+G1p+G2)(Xo’zo|X ,2')dt
2 '3

S’ S

i i

[

1 L
™ [L log( )

LY - L
i

) +Liog (X @) - 1) - 1))

1 J )
+J (GO+Glp+G2)(xo,zQ|x ,z') dt' . (81)
L

S,

i
Here, L is the distance between (Xo’%Q and (xi, z%). The integral
on the right-hand side of (8l) has no singularity at (xo,zo), and

can therefore be evaluated through (78).
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-5
The ith element of the &th segment of V is given by

) % Y12
v, = J J (x,2) sin (E x)e L dt (82)
i i a
£
S,
i
which, upon using (69), becomes
.—'Y Z '
vt =J el o) o e G (83)
i 2 a
S.
i

The integration in (83) can be carried out exactly. However, a

point (iO,EO) exigts such that
£ % L T~ o
Vi = Li sin (a X) e 4 (84)

Actually, finding such points (xo,zo) and (iO,EO) is at least
as difficult as computing the integrals themselves. For sufficiently
small Li, however, the mid-point of Si can replace these points while
introducing only very little error. The system of equations thus
obtained, clearly, is one that results from enforcing the point match-

ing condition

r(x,z) = 0,
2 '3 2 '3
X + x Z, Stz
i +
1+l2 i’ i l2 1)| 1<t<p, 1<1< qQ}

(x,2) € {(
(85)

in (60) rather than the Galerkin condition (62).

9, Numerical Results

The solution procedure presented is readily translated into a

computer program. The elements of the scattering matrix and the
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reactances of the equivalent T-network are basically the parameters
to be computed.

The scattering parameters, thanks to (59) and (69), are com-

puted by
) m —'Y ' b
g = =29 E (& ™ J sin (X x') e 1 dt!
11 aYl m=1 j=1 j Sm a
3
m ey
So1 -1~ %QE E <§ I J sin Cx) el dar'
Y1 m=1 j=1 gl
L L (86)
q Yq2'
S99 = - %QH ) " J sin (- x') e g
Y1 m=1 j=1 J m
S
h|
% " ~y.z'
512 S [ L%} 2 ' J sin (—x') e 1 dt!
Y1 m=1 j=1 gm
k|

where I and I!™ are the solutions of (64) with right—hand side
vectors 3 and 3*, respectively. The impedance matrix is then com-
puted through (54). 1In carrying out the integrations in (86), and
also in (78) and (81), an eight-point Gauss-Radau quadrature rule
[17] is used. Table 1 shows the Py and G4y of the rule.

Because of the approximations involved in the solution, however,
the scattering matrix need no longer be symmetric nor unitary. To
determine the impedance matrix, 812 and 521 are first replaced by

their average
) - (87)

The impedance matrix can then have a non-zero real part.
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To test the solution, the computer program is run for a few
gselected problems. 1In particular, the problems of the circular post,
of the symmetrical thin window, and of the triple circular post are
considered. Some of the results obtained are plotted in Figures 5-9.

In all the cases, the convergence for the inductive reactance
is monotonic and from above, as can readily be seen from Figures 6
and 8, The computed reactances are found to agree well with the data
in the Waveguide Handbook (WGHB) [3], with only a few segments needed
even for large posts. A complete assessment of the solution perform-
ance should also consider the (Frobenius) norm of the real part of Z
and the modulus of difference in transmission coefficients. These
two numbers are computed in all program runs, and are usually 0(10_8)L

Perhaps the most interesting observation can be drawn by
examining Figuri 5 for the centered circular post. For large posts

M

Gg > 0.25), E—-ig is no longer frequency independent as is the case
1

with smaller posts (g_i 0.25), but rather branches out. Figure 9

for the symmetrical triple circular post displays yet another almost
frequency independent characteristic. This is not surprising, however,
since this configuration cancels out the first six higher order modes

[18, Section 5-1.3].

10. Concluding Remarks

The system of inductive posts in a rectangular waveguide,
i.e., of all the metallic obstacles that are uniform along the narrow
side of the waveguide, but are otherwise of arbitrary shape

and thickness, has been considered in this chapter.
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A complete field analysis of the problem is first given. From
this analysis, the scattering and impedance matrix rePrésentations of
the system of posts fully describing its effect on the dominant wave~
guide mode are ohtained. Since the whole structure is both recipro-
cal and lossless, the scattering and impedance malrices are symmetric
and unitary, and symmetric and pure imaginary, respectively. The
latter is then realized in the form of a T-network of reactive ele-
ments.

The reactances of some post configurations are computed in
Section 9, and more results can be found in [19]. In the actual
computation, pulse expansions of the currents induced on the posts
are used., Although chosen primarily so as to render the procedure
economical, the choice is very natural, since pulses are instru-
mental in the definition of integration |16, Chapter 10]. This
choice has proven very successful, nevertheless, as is evident by
the performance of the solution.

The circular post problem was first treated using the
Variational Method [1, Chapter 2}, {2, Section 8-7}. The Vari-
ational Method was also applied to solve the problems of the
inductive thin and thick irises |9, Sections 8-4 and 8-5], and
of an array of symmetric thick irises [23], Single and triple
circular posts have been considered in [7], [8], where many of
their characteristics have been discussed. The present analysis,
however, is quite general. It can also become the first step
in the solution of & system of dielectric posts in the induct jve

position in a rectangular waveguide.
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Appendix A

Consider the function defined by the series

E sin(nn) sin(nn’)e“no )

n

n=1

r (A.1)

lz - ¢'| .

Q
It

Since

[}

sin(an) sin(on') -% (cos n{n-n') - cos n(n#n'))

_ % Re(e—jn(n-n') _ e—jn(n+n')) (A.2)

(A.1) becomes

(o TN [v'e]
= s (nen! _ : '
¢ =1 Reg ) 1 n(o+iMm-n")) _ ) 1 -n(o+i(nin )))_ (A.3)
1 2 “.m “.n
n=1 n=1
In (A.2) and (A.3), Re(z) denotes the real part of z.
Since
1 ; n
== z, zeC, |z] <1
1-z n=0 (A.4)

and the series in (A.4) converges uniformly for all z, Izl_i |zo| < 1,

a term by term integration can be carried out [20, Section 5-4},

giving
z w 2,
J ;?; = 2 J 2" dz
0 n=0 §
n+l n
- log (1—zo) = Z ey z =l (A.5)
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In (A.5), log denotes the natural logarith. Putting 2 equal to

e—(0+j(n—n')) e—(0+i(n+n'))

and in (A.5), then using the results

in (A.3), Gl becomes

e—(0+j(n+n'))
(o+j (n-n"))

G =

) )] (A.6)

Reflog (l - =
1 -e

N =

Finally, since

1 - o (oHi(min')) |2 :
1 - o (oti(n-n"))

(eO - cos(n+n'))2 + sinz(n+n')

(eO - COS(n-n'))2 + sinz(n—n')

_ e20 -2 eO cos(ntn') + 1
e2O -2 eO cos(n-n') + 1
_ cosh 0 - cos (n+n')
cosh 0 - cos (n-n') (A.7)
Gl is given by
_1 cosh 0 - cos(1#n')
S log (cosh o - cos(n—n')) ’ (A.8)
As 0 tends to zero, Gl becomes
=1 1 - cos(n#n')
Gl 4 log (1 — cos(n—n')) . (A.9)

For all (n',£') in a small neighborhood of (n,£), the

following approximation is valid:
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Re[log (1 - "= E=E Jm-n')y,

K

Re[log (JE-Z'| + j(n-n"))]

log (/(.n—n')2 r (E-EMY2) . (A.10)

Thus, Gl exhibits a logarithmic singularity of the form (A.10) at

(n',€') = (n,8).



Appendix B

Consider the series

G2 = z a_ sin(nn) sin(an')
n=2
e—Bnlg'g ‘ e_nlg_gvl
an = Bn - - >
B = n2—02, 1< 0< 2
n o
Clearly
le,| < ¥ lal
2 n=2
Put
e-8<t)lg-£'l tle-gr]
a(t) = B(t) - t L
B(t) = t2—02 1 t>2
Fzn sl e CORNETT St
Then
a(t) = F(z,t) dz .

le-g" |

Since t < B(t) for all t > 2, then a(t) > 0 for all t > 2, and

certainly so is an, n=2,3,...

83

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)



That {an} is a monotonically decreasing sequence follows

84

from its positiveness. Since, F and g% F are continuous for t > 2

and for all z > ]g—g'|, and, furthermore, the integrals

(i

0

{ F(z,t) dz and [ Y F(z,t) dz converge uniformly, then

J
le-g1] le~g |

[21, Section 7-5]

d 9
It a(t) ot F(z,t) dz

|g=g 1|

[+o] [ee]

= = ( zt dz ([ F(u,t) du)

J J
|&-g1 | z

with the help of (B.3) and (B.4). Thus, % a(t) < 0 on [2, ©).

(B.6)

Consequently, a(t) is a monotonically decreasing function for all

t > 2, and certainly so is a s n=2,3,...
(o0}

Thus, G
2 n=2
monotonically decreasing terms. Since
Bn+l z 0 n = 2,3, ..
then
= ~FT = ]
CRaleel -8, lee]
a < 8 = B q n=2,3,...
4 n n+l
Consequently
- ot - Tt
. B,lE-E"] By |EE"
E a < e _ e
n=2 " B, By+1

whence

is dominated by 2 a., a series of positive

(B.7)

(B.8)

(B.9)
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00
o)) s T a st (8.10)
n
n=2 2
- ol )
bt £
q e q .
since goes to zero as N goes to infinity. The rate
B
N+1
of convergence of G2 is therefore exponential.
Put
1 1
bn = 3 T n n=2,3,... . (B.11)
n
Then
a_ < bn’ n=2,3,... . (B.12)
Consequently
(o0} o0} 1
l6,] < ) a = ) S (B.13)
n=2 n=2 2

which can be proven using a similar procedure. G2 does therefore con-

verge uniformly for all (n,£) and all (n',&").

All the above results can also be deduced from Figure B.1.
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b,- a, # THE DARKENED AREA

0,2 THE HATCHED AREA

Figure B.1l. Pictorial illustration of the procedure in

the Appendix.



Chapter 4
MULTIPLE CAPACITIVE POSTS IN A
RECTANGULAR WAVEGUIDE

Consider a system of posts Pl, P2,..., pP located close to
each other in a rectangular waveguide. These posts are assumed per-
fectly conducting, of arbitrary shape and thickness, and uniform
along the broad side of the waveguide, i.e., of the capacitive type.
The medium filling the waveguide is assumed linear, homogeneous,
isotropic, and dissipation free, and is therefore characterized by
the real scalar permittivity € and the real scalar permeability u.

The problem considered is depicted in Figure 1.

1. Preliminary Considerations

Let a TElO to z mode of unit amplitude be incident on the

posts from the left. This mode has the field distribution

. A 5
El = sin CE x) e 0
y a
R -y, z
i_ 0 . & 0
HX = Eﬁﬁ sin (a xX) e \ (1)
. _ -Y.z
H = " cos (L x) e v
z  jwua a

where
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| LY
l.

\
o
Y

Figure 1. p capacitive posts in a rectangular waveguide.
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(2)

K ='%F = wf pe . r
’

In (2), K is the wave number of the waveguide medium, and A is its
wave length. Furthermore, it is assumed that a <A < 2a and 2b < A
so that only the dominant mode can propagate in the waveguide.

Since each post is uniform along the x-axis, and since the
exciting mode has no x-component of electric field, neither does the
scattered field. That is, the scattered field is TE to x, and can
therefore be derived from an electric vector potential F having only

an x-component Y [2, Section 8-7];
F-.-lpz, 3)

The scattered field is given in terms of { by

S

E=-Vxyx
(4)
B = U xVxyx
) FTY P8
while P itself satisfies
W% + By =0 . (5)

Expanding (4) in rectangular coordinates, the components of the

scattered field are found to be
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ES =0 ]
X
s _ _ 3
Ey Y v
s_
Ez T 3y v
6)
2 (
Ty L P
X  jwy aX2
I N
y  jwp 9xdy
g = 1 32 "
z  jwy Jxoz ‘ J

Furthermore, since each post is uniform along the x-axis,
and since the exciting mode has an x-component of magnetic field
that varies as sin (g-x), so does the scattered field. It then
follows from (6) that ¥ must contain sin (g x) as its x~dependent

factor. Thus
Y = sin (g x) Y(y,z) . (7)

Substituting (7) into (5) and psing (2), it becomes

2 "2
5 +25 - v u =0 . (8)
oy L} '

The components of the scattered field are now given by



t=
|

= - sin @0 2 U(r.2)

S _ W hL Al 5di
Ez = gin (a X) 3y Y(y,2z)
s. Yo
HES T sin (3 x) Y(y,z)
H° = —— cos (X x) L Y(y,2z)
y  jwpa a oy V1Y
i = ll cos CE x) 9 Y(y,2z)
z  jwua a 3z P J

The total field,
tangential electric field
field is a free waveguide

tric field tangent to the

incident plus scattered, must have zero
at the waveguide walls. The incident
mode, and does therefore have zero elec-

walls. The scattered field must then have

zero tangential electric field at the walls. This is readily accom-

plished by setting

38; W(y.z) = 0,

y = 0,b, and all x and z (10)

which are the required boundary conditions on the scattered field.

The boundary conditions (10), once satisfied for any value

of x, are clearly satisfied for all values of x. Thus, the problem

91

is basically a two-dimensional scalar one that can entirely be worked

out in some x=constant plane within the waveguide. Considerable
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simplification in the solution can result from choosing the x = %

plane. In this plane, the only components of the scattered field

are
8w )
Ey 2 V(y,z)
5 =2 yly,2) (11)
2 dy Y(y, >
; 2
s _ 0
HX B jwl-l ‘P(Y’Z) J

whereas those of the incident field are

. -Y.Z
El s 0
y
(12)
i _ .-'YO .-‘YOZ
H #i——le
x  Jwp

Finally, an important fact can be established by realizing
that the set of equations (8), (10), and (11) is the same as the set
satisfied by the fields in a parallel plate transmission line, ex-
cept for YO replacing jx. That is, in order to solve any problem
of capacitive posts in a rectangular waveguide, one need solve only
the parallel plate transmission line problem which has the same
cross section, at the same time replacing jK by Yo' In the latter
problem, the exciting field is a TE0 to x mode, again with YO re~
placing jk.

No further simplification is possible, but ¥ is still to be

determined. This can be accomplished with the help of the Green's
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function for TE n to x modes in a rectangular waveguide obtained in

1

the next section.

2. The Green's Function for TE n to X Modes in a Rectangular

1
Waveguide

Consider a magnetic current filament M directed across the
waveguide parallel to the x-axis and located at (y', z'). Further-
more, M is assumed to vary as sin (2 x) along the x-axis. Figure 2
shows the situation considered.

Since M is directed along the x-axis, the field produced
must have an x-component of magnetic field and no x-component of
electric field. Furthermore, since M varies as sin Cg x) along the
x~-axis, so does Hx' This can readily be verified, for instance,
from the reciprocity theorem [2, Section 3-8]. An electric vector
potential having only an x-component |, proportional to HX, as is
seen in Section 1, can then be used to derive all field components.

Only TE to x modes can be excited in the waveguide,

In
since these are the only modes having an HX component that varies
as sin (g x) and no Ex component [2, Section 4-4]. The potential
function ¥ due to the filament, relabeled G, is therefore referred
to as the Green's function for TEln to x modes in a rectangular

waveguide. Below, G is found as a series of these modes.

Put
G = sin (g x) G(y,z) . (13)

G(y,z) then satisfies, for each x, the wave equation
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M=sin (5 x)8 (y-y') 8(z-2")x

) ? I
f
b
A [r
- a >
Ty
o(y'2z')
Ty -

Figure 2. A magnetic current filament M in a rectangular

waveguide parallel to the x-axis.
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5+ =75 - ¥y C3,2) = - §(y-y") 6(z-z") (14)

ay 0z

together with the boundary conditions

é%'G(y,z) =0, y = 0,b, and all z. (15)

In (14), § is the Dirac delta function. Myltiplying both sides of

(14) by cos (%? y), then integrating over y from 0 to b, it becomes

b
2
5 - v - @D J G(y,2) cos (- y) dy
dZ O
= - cos (%? y') &(z-2') . (16)
Put
b
Gn(z) = I G(y,z) cos (%? y) dy
0 o= 051,200 . an

- [@ny2? 2
Yo=Y Gl iy

The one-dimensional wave equation (16) then becomes

d2 2 nm
5 - Yn) Gn(Z) = - cos (——-b y') 8(z-z') . (18)
dz

For the solution of (18) to represent waves traveling away

from the source, Gn must be of the form

-Y z
Yn
A e z >z
n

Gn(Z) = 9 x (19)
B e z' > z
n
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where An and Bn are constants to be determined. Since G is pro-
portional to Hx’ it is continuous across the filament at z = z!

[2, Section 1-14], and so is Gn' Thus

A e - B e =0 . (20)

Furthermore, integrating (18) over z from z' - A to z' + A, then

letting A go to zero, there then results

z
d b nn
0k 5 AL
e Gn(z) . cos (5 vy") . (21)
. d . . . ] nw 1
That is, E;-Gn is discontinuous at z = z' by the amount -cos Ciry e
Thus
_'Ynz' -Ynzl -
= cos — y') - 22
Ay e + By, e il 4] (22)
Solving (20) and (22) simultaneously, An and Bn are found
to be

An = E%— cos (%?-y') o (23)

n
_'Y Z'

B = 5%—-cos %?'y') g i (24)

n
Combining (23) and (24) with (19), Gn becomes
Y, lz-2'|
Gn(z) =-§%— cos C%? y') e . , n=0,1,2,... . (25)
n

By Fourier theory [15, Section 43}, (17) can be inverted as
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-y |z=z'|
ni nmw n
0 cos (G—y) cos ((—y') e
R | b b
G(Y:zly »z') —E Z En 2y
=0 n
(26)
where
1 n=20
€ = . (27)
2 n>1
Clearly, G satisfies the boundary conditions (15).
3. Basic Formulation
As is pointed out in Section 1, the problem is a two-
dimensional scalar one that can entirely be worked out in the x =~%

plane within the waveguide. Thus, all source and field points are,
hereafter, assumed located in this plane. The incident field is
then given by (12), whereas that scattered from the posts is given
by (11).

Let (Ei,_ﬂi) be incident while all the posts are absent, and
(E(J), H(J)) be the field produced by an electric current of density
J = kﬁ) g?, where g@ is the current on Cm, while all the posts are
abseg;% By the uniqueness theorem [2, Section 3-3], (gi + EQ),
Ei + H(J)) is identical with the original field whenever

" x (&' + E@) =0 on c" . (28)

' m . m
In (28), n 1is the outward unit vector normal to C and tangent to

a
2

(11). Since

the x = - plane. (E(J), H(J)) must then have the field distribution
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m m

5 )= J on C (29)

n x (H(J)

- 1D
v=0, v=0_

1 . m m
where V is the distance along n from C, and H(J) has only an x~
. m
component that does not vary with x, J has only an x-transverse

m
component J that does not vary with x:

It = Iy, 2) £ =) £ . (30)

In (30), E? is the counterclockwise unit vector along Cm, and t is
the distance along ¢® from an arbitrary, but fixed, point to (y,z).

Consider the magnetic current distribution

Em = - 1%; vrox J% ) s EP on C" . (31)
Yo
Since
g o L Rt e e G B i - 22 o (32)
= = SRRt vt =

for any function ¢ independent of x, (31) becomes

M = J%H T d‘dv— §(w) x onc". (33)
0

P
The collection kujlym produces a field identical with (E(J), H(J))
m=1
[22]. By definition, G(y,zly',z').z is the electric vector poten-
tial produced at any point (y,z) by a unit magnetic current fila-

ment in the x-direction located at (y', z'). Thus, by superposition,

J produces at (y,z) the electric vector potential y x, where
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!

Vo
: 3
Y(y,z) = l%# E j Jm(y',z') [ J G(y,zly‘,z') E%T S(v') dv'ldt’
Yool B el ~v!
1
at' = /(dy')2 + (@zh? . (34)

In (34), G is given by (26) and (27), and primed and unprimed coordi-

nates denote, respextively, source and field points. Whence

1P=:'i%u E " (y',2" _B%TG(Y:ZH',Z') e’ . (35)
Yo m=1 o

Since G(y,z|y',z‘) is a solution of the homogeneous wave equa-
tion (8) for all (y,z) # (y',z'), so is ¥. Furthermore, Y satisfies
the boundary conditions (10) by virtue of (15). Thus, ¥, and con-
sequently the complete field solution of the problem, can be found

once all J™ are known. Using (4), (12), and (35), (28) becomes

) ~Yo? jwy m 3
n” x [e y + 5 v x ( 8 (v mzY) ToT G(y,zly',z') dt') x]
Yo m=1 om
')
=0, (y,2) eC’, 1<2<p. (36)
Since
o' x @x g =2t x T xm =t x ot xx
B
-5y 0% (37)

(36) can be put in the form
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-Y.Z . 2
, L
sin(8(",y) e ° - J%E E J y',zh) -5\%3.- G(y,z|y',z') dt’
YO m=1 o™
)
= 0, (y,z) € C7, 1<2<p (38)

which is an integral equation for J. 1Im (38), 6(32,1) is the angle

Eg makes with the y-axis at (y,z).

The higher order (n > 1) modes excited are evanescent, i.e.,
decay exponentially with distance from the posts. Thus, at distances
sufficiently far from the posts, only the dominant mode (n=0) can
exist. The reflection coefficient of the dominant mode is readily

found from (11), (12), (26), (27), and (35) as

. p g%
- ) [ ot s @y e O aet . (9)
0 m=1 c®

The transmission coefficient of the dominant mode is then

‘ Y.z'
T=1 +-%9E— E f Iy, z") sin(G(nm,X')) o dt'’ (40)
YaP i

0" m=1 -m

4. The Scattering Matrix

Following Montgomery et al. [10, Section 5-14], the scatter-

ing matrix of the posts is defined as

E o

11 12
S = . (41)

21 22
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In (41), Sll and 821 are, respectively, the amplitudes of the domi-

nant mode reflected to the left and transmitted to the right of the

posts due to an incident TE to z mode of unit amplitude from the

10
left. Consequently, S11 and 821 are given by (39) and (40), respec-
tively.
Similarly, 522 and 812 are, respectively, the reflection and

transmission coefficients of a TE to z mode of unit amplitude inci-

10

dent on the posts from the right. 1In the x = plane, this mode has

i

the field distribution

. Y nZ
El 2= 0]
y
(42)
. Yn  YnZ
Hl = Tll e 0
X jwu )

The previous analysis carries through in this case. Thus,
P '
the scattered field is given by (11) and (35), but with J' = k,) J m’
m=1

now replacing J in (35), determined by solving the integral

equation
2 Y0z jwp b m 82
sin (6(n",y)) e - Z J'"(y',z") ; G(y,zly',z') dt'
2 21 n vV
Yo ™ ¢
_ L
=0, (y,2)eC’y, 1<2<p (43)

rather than (38). It then follows from (11), (26), (27) and (35)

that
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Y2 .
8,y = %QH_ g J I'™(y',2z") sin (B(n",y")) e LTS (44)
Y0b m=1 ‘m
C
: p -y.z'
= Jw m, m 0 .
St = ek 27,0 mzl Jm J'"(y',2") sin (8(n ,y')) e ' (45)

The scattering matrix is both symmetric and unitary. That is

(46)

where T and H denote matrix transpose and Hermitian, respectively,
and U is the identity matrix.
1 1 2 2 . .
Let (E°, H) and (E", H') be the z-transverse fields in the
waveguide, sufficiently far from the posts, due to TE10 to z modes

of arbitrary amplitudes q and <, incident from the left and from

the right of the posts, respectively. It then follows from (11),

(12), (26), (27), (35), (39), (40), (42), (44), and (45) that

7 ~Y,2 Yo?
¢ (e + Sll e )y z << 0
B e
o2
I-clSZIe y z >> 0
Ny ¢ (e loj - Sll eYOZ)‘g z << 0
al o= ]
H vy
Mo €1 51 ¢ X 4 20

(47)
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( Yy2
c2 S12 e b z << 0
EZ = L
YOZ _YOZ
c, (e + 822 e A z >> 0
p .YOZ
no ¢y 512 e X z << 0
R
YAz Y2
0 0
Ny €9 (e - 522 e )'5 z >> 0 .

In (47), nO is the characteristic admittance of the dominant wave-

guide mode:

e (48)

Let W be the curve enclosing the surface area of the waveguide

in the x =-% plane between the z = zq and z, lines, for some zq << 0

and z, >> 0. The reciprocity theorem then states that

I(E *H - E xH) +ndt =0 (49)
W

where n is the outward unit vector normal to W and tangent to the

X = %-plane. Substituting (47) into (49), there then results

2b <y 812 c, = 2b ¢y 521 c, (50)
whence

S Roal D

The scattering matrix is symmetric if and only if the whole structure

is reciprocal.
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That S is unitary follows from conservation of power con-
siderations. Let the two dominant modes be simultaneously incident

on the posts from the left and from the right. The complex power

scattered far to the left and to the right of the posts in the x = %
plane is basically
P =bn, (J]c,S5.. +c.S |2+|cS +c,S |2) (52)
sc 0 111 2712 1721 2722
whereas that incident is given by
_ 2 2
FP=ni s (|c1| + |c2| ) . (53)

Since the structure is lossless, and since Pin and PSc are real, they

must be equal. Put

1
¢ = . (54)
=9
Then
bn, 4.5 br, SHeHg 2 (55)
or
sfs = v

5. The Impedance Matrix

Let TE10 to z modes of arbitrary amplitudes c1 and cy be

incident on the posts from the left and from the right, respectively.

Let vy and Vo be, respectively, the amplitudes of the Ey
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component far to the left and to the right of the posts referred

to the z = 0 plane. It then follows from (47) that

= (1 + S + S c

117 & 12 €2

<
|

S c, + (1 +58

2 21 ©1 22) ©

<
|1

9

The choice of z = 0 as a reference plane is only a matter of

venience. 1In matrix form (57) and (58) become

> ->
v=(U+5S8)c
where
Y1
+
V=
V2

(57)

(58)

con-

(59)

(60)

Similarly, let i, and i, be, respectively, the amplitudes of

1 2

the Hx component far to the left and to the right of the posts

extrapolated back to the z = 0 plane. Then

= (1 =S50 en —T500 %

.
[

E

go 12 = - 821 Cl + (1 -5S..)c¢

227 "2 ¢

In matrix form, (61) and (62) become

. I=(@w-38) ¢

0

where

(61)

(62)

(63)



1Cé

ey

(64)

To relate to network theory, let (vl, —il) and (vz, 12) be
the complex voltage-current pairs at the terminals of a two-port

network [10, Section 4-5]. Then

<4
"

™

-y

(65)

where Z is the network impedance matrix. From (59) and (63), Z is

readily found as
Z=17, (U+ 8 - sy~1 (66)

Since S is symmetric, so is Z. Furthermore, since

Z = CO(U + S)(U - s)'1 co(sHs + s)(sHs - s)—l

R CEERUYCLE
- -1 (67)
the elements of Z are pure imaginary. Thus
| 11 X12
Z =13 (68)
>
o Xp2
hen -l
X190 = X1 )
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6. The Equivalent Network

The complete field is seldom needed. Rather, the effect of
the posts on the dominant waveguide mode is what must accurately be
discribed. From an engineering perspective, a description in terms
of a network of lumped elements is preferred.

The effect of the posts on the dominant waveguide mode is
fully described by the impedance matrix Z. Such a representation can
be realized in the form of a two-port T-network [10, Section 4-5].

The characteristic impedances of the TE to x modes are

In
given by
nm, 2 M2 2
ro= - ~th)) * (a) -~ e
n J 2 T2 ==
K - (2)
a
(69)
- H
¢ £

Since these modes are evanescent, the energy stored close to the
posts, in view of (69), is predominantly electric. This effect can
suitably be represented by a capacitor in the shunt arm of the net-
work. The elements in the series arms are also capacitors to account
for the change difference across the posts in the z direction. The

equivalent network of the posts is shown in Figure 3.

7. Solution of the Intergal Equation

The integral equation (38) can be written in compact form as
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- A | ¢
T 71 1€ e
b i2
§° v, ﬂf_ X2 V2 Lo
-. e

N
"
o
™
"
o

Figure 3. The equivalent network of the pasts.
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P
b 2 (@™ = sin (8", y)) V

, ?
2" (™ = J%HJ I(y',2") s Gly,zly',2") at’ % (70)
Mg GR
_’Y z
71 o A | (y,Z)ECQ, 1<2<p

o

An exact solution of (70) can rarely be obtained and an approximate

solution has then to be sought.

Let each C" be approximated by a polygon zm = {ST, S?,...,Sn;}
q
as shown in Figure 4, and put
m
) c& I? J?(y',Z') 5 (71)

In (71), I? are complex coefficients to be determined, whereas each

J? is a real function that vanishes on all Sz : ?, but is otherwise

unspecified. Thus, 6(3 , ¥) is constant on Sj:

6", y) = 6(n;, y) = 0 on " (72)
= .t 3 J
Substituting (71) and (72) into (70), there then results
. 2
Z (& Z (J ) + r = sin (ei) v,
=1 j=1
2 , L
(y,2z) € S5 l<ge<p,1<1ix<q". (73)

The integrals in (73) are taken over S?, and r is a residual term.

A Galerkin solution [4, Section 1-3] can be obtained by requiring
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Figure 4. o' approximated by a polygon zm'



ey

that r be orthogonal to all J?.

Define the inner product

<A, B> = I A B* dt (74)
St

2=1

where * denotes complex conjugate. Taking the inner product of

(73) with each Ji and enforcing the Galerkin condition

<r,Ji’>=0 l<t<p, 1<ic<g (75)

it becomes

E q} <1y oz (), Ji> = sin (ei) <V, J§> ,
m=1 j=1 J ] ]

1<2<p , 1l<ic<gq®. (76)

The system of equations (76) can be put in the matrix form

=DV . (17)

Nl
=y

In (77), Z is a p by p block matrix whose fmth block is the matrix

Zﬂm - [Zi?] L m
q *q

g m ,.m L

q

D is a p by p block diagonal matrix whose 2£th block is the diagonal

matrix

p** = 0771, , =I[sin (e’;)]
q *q q

L % (79)
xq

> >
and I and V are p segment vectors whose mth and 2th segments are

the vectors
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m
"= 1l (80)
Vo=, =V, 9], (81)
q %1 q *x1
respectively.

The currents Jm given by (71), with the coefficients I?
determined from (77), form the Galerkin solution of (70). A galerkin
solution of (43) can be obtained in a similar manner. Clearly, then,
using the same J?, the solution is given by (71), but with coefficients
now determined by solving (77) with the right-hand side vector 3 con-

jugated

8. Evaluation of the System of Equations

The construction of Z in (77) constitutes a large portion of
the work involved in the numerical solution. An efficient evaluation
of the elements of Z is therefore necessary for its success.

The ijth element of the mth block is given by

2
fm - Jwu 2 m v d v '
zij = LL Ji (y,2z) dt Jm Jj (y's2") Foa0T G(y,zly',2z") dt
Yo 55 ]
J (82)

where J? are so far unspecified. A particularly simple choice for

J, is
J
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(
1 Gz es)
J‘Jf’(y',z') = 9 (83)
0 'zt 530
which corresponds to a pulse expansion of J?. i? then becomes
2
m 9
Zij i ';L?J dt j a\)a\)| G(Y,Z|y ') dt' . (84)
Yo s ST
J
Put
m 82 2
= t 1] ]
le(Ysz) Jm Jvgu? G(Y:Z|Y sy Z ) dt', (y,Z) € Si (85)
S,
J

By the first mean value theorem of integration [16, Section 7-18],

there exists a point (yo,zo) € Sf’such that

fm _ juwu & _fIm
20 - 1 LE R (e (86)
Yo
where
g ) N T 1.2
Ok /(yi+1 -y 2y -2y (87)

is the length of Si.

Put
G(y,zly'sz") = (Gy + G + C,)(y,z[y'sz") . (88)

In (88)
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,
-3 plz-2' 18, 7
v 1y = &
GO(Y,Z|Y »z') _']ZTTB
151 - Trlz-z|
i
Gl(y,zly',z') = 2 o cos (%;-y) cos C%? v')e b
n=1
. y  (89)
G, (y.zly",z") =+ j cos (B-y) cos (X y")
2 b b
n=1
m
e—-g|z z an ] | z-2z |
x( Bn - n )
_ _ E 2 2b 2 _ b 2, il
(90)

[z, 2 1 [2_ 2_
(0 JAGAS ok o o

The decomposition (88) therefore amounts to expressing the dynamic
Green's function G in terms of a dominant mode wave GO, the corre-
sponding static Green's function Gl’ which can be obtained from (26)
by dropping the n = 0 term and setting YO equal to zero in the re-
maining terms, plus a correction series G2'

The series defining G1 is readily summed to give
1
' ' |
Gl(Ysz[y »z2') Zblz z |

- f; log[cosh(%lz—z'l) - cos (% (y+y'))

x (cosh(i|z-2"|) = cos(y (y=y"))1 (91)
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where log denotes the natural logarithm. The details of the summation
are given in Appendix A. The series in G2 is dominated by an exponen-
tially convergent series of positive monotonically decreasing terms, as
is shown in Appendix B of Chapter 3, and can therefore he summed di-
rectly at a minimal cost.

The normal derivatives of G at (yo,zo) € Si’ and at any
(y's2") € S? can be computed numerically through finite differences.
Thus, for all (L,i) # (m,j),

2

M M!
_a__. f ' = __l__ ' 1 1
TvauT G0 %92 * o kzl kz=lbkbk'(Gomlmz)(yk’zklyk"zk‘)'

(92)

Here, (yk,zk) are the pivot points along the normal to Si at (yQ,zo),
and bk are the coefficients and c¢ is the multiplier factor of the Mth
difference formula. The parameters for the M'th difference formula,
(yﬁ,,zé,), bé,, and c', are similarly defined.

When dealing with the diagonal elements of ?,((Q,i) = (m,3)),
G1 offers a logarithmic singularity at (yo,zo) that requires particular
attention. In Appendix A, the singular part of G1 is found to be

-1 m
l 1 L |
Gls(yo’zoly »z') T log[2(cosh(b (zo z'))

- cos G (v -yINI . (93)

Put

_ ot
Glp(yc)’zo!y':z‘) (Gl Gls)(yo’zoly »2') . (94)
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Then

9 262
5 R T g 1

vov’! G(yo,zoly :2') = 8b Cg) Re| 2 mao ]

sinh”™ (& 3)

b 2
12
*augur Coterptep) 00z, ly"e2")
jzei
. 1 m e
T W Re{sinhz ¢ 3 :
b 2
;Mo
1 4 L
tommem L b B G0 6 (o lypre g )
k=1 k'=1
(95)
where
== —_ ! A .y
0= (z-2") + 3y -vy") . (96)

The truth of the first term on the right-hand side of (95) can readily
be verified in a straightforward manner by carrying out the normal
differentiations, and Re(z) denotes the real part of z.

2

The evaluation of sz is now completed by integrating —-—9——,— G
1] AVEAY)

over S?, and for that purpose any quadrature rule can be used. Thus,

oy
fm _ jop i i
z,, =+ Y g
ij Y.Z 2 u=1 U
x 1
o
= \ 1 1
= kzl kZ=lbkbk(G0+G1+G2)(yk,zklyuk.,zuk.)] . 09D
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In (97), (y&k,,z&k,) are the pivot points of the M' difference formula
R

along the normal to Sj at ((1—pu)y P y3+l’ (1—pu)z + p Zj+1)’ and

q, are the coefficients and P, determine the location of the abscissas

of the Nth integration rule. The diagonal elements of Z are then given

by
7 Al
ii 2 i ii
Yo
Li N M M
+ = G +G ’ : '
2 21 Ny gl kz kP G001 Uo7 172y 1]
(98)
where j29i
% _ 1 E e '
Gii = 35 (b) ]9 Re[;;;EE—ZE?i_] dt!' . (99)
Si b 2

The singularity in the integrand at (yo,zo) is not integrable. However,
the limit of the integral as (y,z) approaches (yo,zo) along the normal
at (yo,zo), not its value at (yo,zo), is what is actually needed. The

integral is elementary, nevertheless, and is readily evaluated to give

R .2 AR
0 -1 jo. L, -L j6, j9’

_a i m i 71 3%
Gii = 7% Rele (coth(b 5 e ) + coth (b 5 € )] (100)

L%
where L is the distance from (yi, zi) to (yo, zo).

>
The ith element of the fth segment of V is given by
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% ) ~Yo*
v, =f I/(y,2) e 0 a4t (101)
L

51

which, upon using (83), becomes

v, = J e dt . (102)
2

The integration in (102) can be carried out exactly. However, there

exists a point (§O,Eo) such that

-
T = i 0 (103)
1 1

Actually, finding such points (yo,zo) and (§O,EO) is at
least as difficult as computing the integrals themselves. For suf-
ficiently small Li, however, the mid-point of Si can replace these
points while introducing only very little error. The system of equa-
tions thus obtained, clearly, is one that results from enforcing the

point matching condition

r(y,z) =0,
2 2 £

Yoo, Y.z .
(v,2) ¢ (4, ML Ili<n<p, l<icag

in (73), rather than the Galerkin condition (75).

9. Numerical Results

The solution procedure presented is readily translated into a

computer program. The elements of the scattering matrix and the
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reactances of the equivalent T- or Ill-network are basically the
parameters to be computed.
The scattering parameters, thanks to (71), (72), and (83), are

computed by

- h
. -y.z'
511 = 3% E C% 1 sin(e‘f’)J e O ac
Y0® m=1 j=1 I T im
J
m Y z!
S, =1 + 32 E (% I, sin(8),) o g
21 2y,.b o
0" wm=1l j= gl
. 3 (105)
m Y z!
522 = %QEE E (ﬁ e sin(ﬁ?)f e 0 dc!
YO m=1 j=1 J J g
i
m -y 2!
S, =1+ 50 E (& 7% sin(e‘.“)J er O e
Yo m=1 i=1 ] ] g™
k| J

where I? and Ijm are the solutions of (77) with right-hand side vectors
3 and 3*, respectively. The impedance matrix is then computed through
(66). 1In carrying out the integrations in (105), and also in (97) and
(98), an eight-point Gauss-Radau quadrature rule [17] is used. The
parameters of the integration rule are shown in Table 1 of Chapter 3,
For differentiation, a symmetric finite difference formula with

M=2,b, =1, and b, = -1 is used. The multiplier factor c¢ is set

1 2

equal to two tenths of the length of the segment where differentia-
tion occurs.

Because of the approximations involved in the solution, the
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scattering matrix need no longer be symmetric nor unitary. To deter-
mine the impedance matrix, S12 and 321 are first replaced by their

average
1
S =—2—(s + S..). (106)

The impedance matrix can then have a non-zero real part.

To test the solution, the computer program is run for a few
selected problems. In particular, the problems of the circular post
and of the symmetrical thin strip are considered. Some of the results
obtained are plotted in Figures 5-8.

In all the cases, the convergence for capacitive susceptance

B. is monotonic and from above, as can be seen for the thin strip in

b
Figure 8. The computed susceptances are found to agree well with the
data in the Waveguide Handbook [3], with only a few segments needed
even for large posts. A complete assessment of the solution should
also consider the (Frobenius) norm of the real part of Y = Z—1 and

the modulus of difference in transmission coefficients. These two

numbers are computed in all program runs, and are usually 0(10—7).

10, Concluding Remarks

The system of capacitive posts in a rectangular waveguide, i.e.,
of metallic obstacles that are uniform along the broad side of the
waveguide, but are otherwise of arbitrary shape and thickness, has

been considered in this chapter.
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Figure 5. The series susceptance of the centered circular post.
The number of segments used is 30.
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Figure 6. The parallel susceptance of the centered circular post. The
number of segments used is 30.
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A complete field analysis of the problem is first given. From
the analysis, the scattering and impedance matrix representations
of the system of posts fully describing its effect on the dominant
waveguide mode are obtained. Since the whole structure is both recipro-
cal and lossless, the scattering and impedance matrices are symmetric
and unitary, and symmetric and pure imaginary, respectively. The
latter is then realized in the form of a T-network of capacitive ele-
ments.

The susceptances of some post configurations are computed in
Section 9. In the actual computation, pulse expansions of the currents
induced on the posts are used. Although chosen primarily so as to ren-
der the procedure economical, the choice is very natural, since pulses
are instrumental in the definition of integration [16, Chapter 10].
This choice has proven very successful, nevertheless, as is evident
from the performance of the solution.

Circular posts and thin diaphragms and windows were treated
early using the Variational Method [1, Chapter 3], [2, Section 8-9].

In [18, Section 6-3], the "Singular Integral Equation Method" was
applied to the symmetrical thin window. In contrast to the limited
application of these two methods, the present analysis is quite general.
It can become the first step in the solution of the system of multiple

dielectric posts in the capacitive position in a rectangular waveguide.
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Appendix A

Consider the function defined by the series

c = § cos(nn) cos(nn') e ™9 )
1 n
n=1
c=lg-¢"| .
Since
cos{(nn) cos(nn') =-% (cos n(n-n') + cos n(niM'"))
_3 .y . '
2 % Re (e JR(M-N") 4 ~in(rin'), (A.2)
(A.1) becomes
1. % 1 (oY) , ¢ 1 _-n(oHi(nn'))
Gl—zRe(EEe +2-I;e ) .+ (A.3)
n=l n=l
In (A.2) and (A.3), Re(z) denotes the real part of z.
Since
1_1_=22“ , zeC, |z] <1 (A.4)
-2
n=0

and the series in (A.4) converges uniformly for all =z, |z| f_lzol <1,

a term by term integration can be carried out [20, Section 5-4], giv-

ing
Zo o ZO
[ f@£.= Z J zn dz
i n=0
0 0
n+l n
T %%
-log (1 -2) = ) i N — (A.5)
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In (A.5), log denotes the natural logarithm. Putting z equal to

_ . _nt - . '
e (o+3(n-n")) and e (o3 (nin ™)) in (A.5), then using the results

in (A.3), Gl is found to be

¢, = _,% Re[log((1 - e-(o+j(n—n')))(1 _ e-(0+j(n+n'))))]. (A.6)

Finally, since

la - e-(0+j(ﬂ-ﬂ')))(l I e—(0+j(n+n')))lz

~4o, 20 6]
e (e

- 2e” cos(mn')+l) (e20 - 2e0 cos(n-n')+l)

= Ae—ZG (cosh g = cos(ntn'))(coshg - cos(n-n')) (A.7)

G1 becomes

G1 = %«j- % log[4(cosh o= cos(mn')) (cosh o - cos(n-n"))]. (A.8)

Since

(1 m e‘J(TT"T]'))(l _ e‘j(ﬂ'n'))

—- ‘ _c —_ ' —n
1 - 30" _ mi(nmn') o m32n

= 2¢ V! (cosn- cos n') (A.9)
Gl’ as 0 tends to zero, becomes

G1 = - %—log (2|cosn - cos n' . (A.10)

The singular part of G1 can readily be extracted from (A.8).

That is, clearly,
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G = o log(2 (cosh (E-£') - cos (n-n'"))) . (A.11)
1s 4
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Chapter 5

DISCUSSION

Three systems of waveguide discontinuities have been considered
in this dissertation.

The first system is that of multiple apertures of arbitrary
shape in the transverse plane between two cylindrical waveguides.

The second system consists of metallic obstacles in a rectangular
waveguide that are uniform along the narrow side of the waveguide, but
are otherwise of arbitrary shape and thickness, i.e., a system of in-
ductive posts. Finally, the third system consists of metallic ob-
stacles in a rectangular waveguide that are uniform along the broad
side of the waveguide, but are otherwise of arbitrary shape and thick-
ness, i.e., a system of capacitive posts. Common between the first
and second systems are the inductive windows and strips in a rec-
tangular waveguide, and between the first and third systems are the
capacitive windows and strips in a rectangular waveguide.

The analysis of waveguide discontinuities has primarily been
carried out on an elementary scale. That is, solution techmniques
have been sought and applied for problems with a single disconti-
nuity. Rarely have problems involving three or more discontinuities
been considered, and only then if they are all of the same shape.
Although some of the elementary problems are of practical importance
that warrants considering them, these and others are better worked

out as special cases of general systems of discontinuities. This,
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of course, provided that general and efficient solutions can be found
for such systems. It has been the purpose of this dissertation to
demonstrate that for the three systems considered.

Other systems of discontinuities can be handled using the methods
employed in this dissertation. 1In fact, the solutions given in Chap-
ters 3 and 4 can become the first step in the analysis of systems of
multiple dielectric posts in the inductive and capacitive position
in a rectangular waveguide, respectively. Another important system
of discontinuities, but one for which major revisions in the analysis
of Chapter 3 are to be made, is that of metallic resonant posts in
the inductive position in a rectangular waveguide. These systems, as
well as others that can be identified, are recomended for future
study.

It is believed that advances can be made in the study of the
waveguide discontinuities by considering systems of discontinuities
rather than individual discontinuities. General and efficients solu-
tions can be developed for these systems as, it is hoped, has been

demonstrated in this dissertation.
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